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1. Find the volume of the region in the first octant that lies inside x2 + y2 + z2 = 9 and above
the cone z =

√
x2 + y2.

A. 18π

B. 9π
√
2

C. 3π2/8

D. 9π2/16

E.
9

2
π

(
1− 1√

2

)
F. 9π/2

2. Find ∫
C

5
√
xyz

√
1 + 8y

ds

where C is r⃗(t) = t⃗ı+ t2ȷ⃗+ t2k⃗ for 0 ≤ t ≤ 1.

A.
4

3

B.
13

12

C.
1 +

√
5

2

D.
1

3

E.
3
√
5− 1

8

F.
1

2

2



3. Compute the double integral

∫∫
R

3xy2

1 + x2
dA where R is the rectangle

R = {(x, y) : 0 ≤ x ≤ 1, −2 ≤ y ≤ 2}

A. 0

B. 4 ln 2

C. 2π

D. 8 ln 2

E. 4π

F. 2π ln 2

4. Use Green’s Theorem to evaluate

∫
C

2xy dx + y2 dy where C is the boundary of the

rectangle with vertices (0, 0), (1, 0), (1, 3), and (0, 3), oriented counterclockwise.

A. 0

B. −3

C. −9

D. 6

E. −27

F. 12
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5. Let D be the region between x2 + y2 = 1 and x2 + y2 = 4 which is above z = 0 and below

z = 4− (x2 + y2). Using cylindrical coordinates, if f(r, θ, z) =
1

r3
then the value of

∫
D

f dV

is:

A.
4π

3
B. 0

C. π(3− ln 4)

D.
9π

8
E. 2π

F. π

(
15

4
− ln 16

)

6. Consider the following triple integral.∫ 2

0

∫ 2

x

∫ 4

2y

f(x, y, z) dz dy dx.

Which of the following is the correct way to re-write the integral with respect to the order
of integration

∫∫∫
f(x, y, z) dx dz dy?

A.
∫ 2

0

∫ 4

2y

∫ 2

y
f(x, y, z) dx dz dy

B.
∫ z/2

x

∫ 4

2x

∫ 2

0
f(x, y, z) dx dz dy

C.
∫ 2

0

∫ 2y

0

∫ y

0
f(x, y, z) dx dz dy

D.
∫ 2

x

∫ 4

2y

∫ 2

0
f(x, y, z) dx dz dy

E.
∫ 2

0

∫ 4

2y

∫ x

0
f(x, y, z) dx dz dy

F.
∫ 2

0

∫ 4

2y

∫ y

0
f(x, y, z) dx dz dy
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7. If ∇φ = ⟨2x,−2y⟩ then the equipotential curves (level curves of φ) are mostly

A. Lines

B. Isolated points

C. Non-circular ellipses

D. Hyperbolas

E. Circles

F. Parabolas

8.

Compute the double integral

∫∫
R

x dA where

R is the region in the plane inside of the circle
x2 + y2 = 4 and above the line y = −x.

A.
1√
2

B.
8
√
2

3

C. 2
√
2

D.
8

3

E.
8√
3

F. 0
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9.

Find ∫
C

F⃗ · dr⃗

where F⃗ (x, y) = ⟨−ey sinx, ey cosx⟩ and the curve
C is the pictured path (a sequence of directed line
segments and semicircles) from (0, 0) to (0, 1).

A. e− 1

B. 1− e

C. e+ 1

D. 0

E. −e

F. e

10. Find ∫
C

F⃗ · T⃗ ds

where F⃗ (x, y) = −y⃗ı+xȷ⃗ and C is the circle of radius 1, centered at the origin and oriented
counterclockwise.

A. 1

B. π

C. π/2

D. 4π

E. 0

F. 2π
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11. Compute the double integral
1

x ln(y)
dA where is the triangle with vertices (1, 1),

(1, 3), and (3, 3). Hint: the integral is easier with one order of integration than the other.

A.
2

ln(2)

B. 2

C. 0

D. 1

E. ln 3

F. 3 ln 3

12. Compute the absolute maximum of the function f(x, y, z) = 2x+ 2y − z over the sphere
x2 + y2 + z2 = 9.

A. 5
√
3

B. 9

C. 6
√
2

D. 6
√
3

E. 7

F. 10
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