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1. Which of the following pairs of equations describes a pair of orthogonal planes?

A. 3x+ 2y + z = 4 and x+ y − 5z = −1

B. x− y + 2z = 1 and −3x+ 3y − 6z = 10

C. 2x− y + 3z = 0 and 4x+ 4y + z = 0

D. x = y and y = z

E. None of the above.

2. On which of the following types of quadric surface does the following parametrized curve

r(t) = 〈t sin(t), 3t2, −t cos(t)〉

lie?

A. cone

B. sphere

C. ellipsoid, but not a sphere

D. paraboloid

E. None of the above.
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3. Calculate the arc length of r(t) = 〈3 sin(2t), 4, 3 cos(2t)〉 for 0 ≤ t ≤ π/3.

A. π

B. 2π

C. 5π/3

D. 6π

E. −π/3

4. Find the maximum rate of change of f(x, y) =
√

7− x2 − y2 at the point (−2, 1).

A. 3/
√

2

B.
√

8

C.
√

10/2

D. 1/4

E. 5/
√

2
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5. Find the equation of the tangent plane to the surface x2 − y2 + z2 + 2 = 0 at the point
(1, 2, 1).

A. 2x− 4y + 2z = −6

B. 2x− 4y + 2z = 4

C. x− y + z = 0

D. −x− y + z = −1

E. x− 2y + z = −2

6. Let f(x, y) = ex+3y−3 sin(πxy). Find
∂f

∂x
(1, 1).

A. −π
B. eπ

C. −eπ
D. −eπ2

E. −e
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7. The temperature at the point (x, y) is given by T (x, y) = x3y. Find the rate of change of
the temperature with respect to time t at t = 2 along the path: r(t) = 〈t, t2〉 of a moving
particle.

A. 48

B. 60

C. 64

D. 70

E. 80

8. Consider the function

f(x, y) =
1

4
x4 + xy +

1

4
y4 on R2

Then the function

A. has one saddle point and two local minima.

B. has 4 critical points.

C. has an absolute maximum and absolute minimum.

D. is always positive and hence has absolute minimum of 0.

E. has one local maximum and two local minima.
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9. By changing the order of integration, compute∫ 1

0

∫ √1−x2

0

√
1− y2dydx

A. 0

B. π/4

C. 1/3

D. 2/3

E. 1

10. Find the volume of the region bounded below by the surface z = 2 −
√

4− x2 − y2 and
above by the surface z = 6− x2 − y2. (Hint: use cylindrical coordinates)

A. π

B. 40
3
π

C. 16
3

+ π

D. π(53
6
−
√

3)

E. 11
6
π.
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11. Compute the line integral
∫
C

(4x3 + y3) ds, where C is the line segment from (0, 0) to
(1, 2).

A. 3
√

5

B. 0

C.
√

5π

D. 5
√

5/4

E. −5

12. Compute the line integral
∫
C
F · dr, where F = 〈yz, xz, xy〉 and the curve C is parametrized

by r(t) = 〈t2, t, t3 − 3t〉, 1 ≤ t ≤ 2.

A. 0

B. 10

C. 8π

D. −16

E. 18
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13. Compute

∮
C

F · dr for F = 〈y2, xy〉, where C is the curve bounding the rectangle with

corners (0, 0), (2, 0), (0, 1), and (2, 1) oriented counterclockwise.

A. 0

B. 1

C. −1

D. −3/2

E. 2e2 + 2

14. Compute

∮
C

y2 dx+ x dy, where the curve C is the boundary of the half-disk

R = {(x, y) : x2 + y2 ≤ 9 and x ≥ 0}

with clockwise orientation.

A. 0

B. 9π/2

C. 9π

D. −9π/2

E. −3π
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15. Given a two-dimensional vector field F(x, y) = 〈x2 +
y

x2 + y2
, x− x

x2 + y2
〉, compute the

value of the scalar curl of F(x, y) at the point (2, 1).

A. 3

B. 1

C. 7/
√

5

D. 4/
√

5

E. 5/
√

5

16. Find the surface area of the parametric surface

r(u, v) = 〈2u+ 3v, 3u+ v, 2〉, 0 ≤ u ≤ 2, 0 ≤ v ≤ 1.

A. 3
√

2

B. 14

C. 4

D. 12

E. 4
√

2
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17. Let S be the part of the plane y + z = 10 that lies inside the cylinder x2 + y2 = 1.

Compute

∫∫
S

F · n dS for F(x, y, z) = 〈x, 1 − y + ez, y − ez〉 with S oriented by the

upward normal.

A. 2eπ

B. −πe2

C. −2π

D. π

E. 1− 4π

18. Consider F =
r

|r|3
, where r = 〈x, y, z〉 and |r| = (x2 + y2 + z2)1/2. Which one of the

following is true

(i)
∫
C
F · dr is independent of path.

(ii)
∫∫

S
F · n dS = 0 for any closed surface S that encloses the origin.

(iii) div(F) = 0.

A. None of the above.

B. Only (i) and (ii).

C. Only (i) and (iii)

D. Only (ii) and (iii).

E. All of the above.
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19. Let F = (y + z cos(x)) i + (−x+ z sin(y)) j + (xyez)k, compute∫∫
S

(∇× F) · n dS,

where S is the part of the graph of z = f(x, y) = ex (x2 + y2 − 36) below the xy-plane
with downward pointing normal.

A. 72π

B. 36π

C. 0

D. −36π

E. −72π

20. Compute ∫∫
S

F · n dS

the net outward flux of the vector field F = 〈x + y, y − z, xy + z〉 across the surface S,
which is the boundary of the solid bounded by z = 0, y = 0, y + z = 2, and z = 1− x2.

A. −32/5

B. −32/15

C. −16/5

D. 32/15

E. 32/5
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