MA261 Spring 2015 Final Exam, 8:00-10:00am

1. Find the arc length of the curve given by

$$
\vec{r}(t)=2 t \vec{i}+(3 \sin 2 t) \vec{j}+(3 \cos 2 t) \vec{k}, \quad 0 \leq t \leq \pi
$$

A. 2π
B. $\sqrt{2} \pi$
C. $2 \pi \sqrt{10}$
D. $2 \pi \sqrt{3}$
E. $\sqrt{13} \pi$
2. For $t=2$, find a set of parametric equations of the tangent line to

$$
\vec{r}(t)=t^{2} \vec{i}+3 t^{3} \vec{j}+t^{4} \vec{k}
$$

A. $x=4+4 t$
$y=24+36 t$
$z=16+32 t$
B. $x=4+4 t$
$y=24+24 t$
$z=16+16 t$
C. $x=4+2 t$
$y=24+9 t$
$z=16+4 t$
D. $x=4 t$
$y=24 t$
$z=16 t$
E. $x=4+4 t$
$y=24+9 t$
$z=16+4 t$
3. If $f(x, y)=\sin \left(x^{2}+y^{2}\right)$, then $f_{y x}$ equals
A. $-2 x \sin \left(x^{2}+y^{2}\right)$
B. $-4 x y \sin \left(x^{2}+y^{2}\right)$
C. $-4 x y \cos \left(x^{2}+y^{2}\right)$
D. $-4 x^{2} y \sin \left(x^{2}+y^{2}\right)$
E. $4 x^{2} y \sin \left(x^{2}+y^{2}\right)$
4. An equation of the tangent plane to the graph of $2 y=z^{3}+3 x z$ at $(1,7,2)$ is
A. $15(x-1)+6(y-7)-(z-2)=0$
B. $6(x-1)-(y-7)+15(z-2)=0$
C. $6(x-1)-2(y-7)-(z-2)=0$
D. $6(x-1)-2(y-7)+15(z-2)=0$
E. $6(x-1)-2(y-7)+12(z-2)=0$
5. The level curves of $f(x, y)=x-\frac{y^{2}+1}{x}$ are
A. parabolas
B. ellipses
C. circles
D. lines
E. hyperbolas
7. A particle moves with acceleration $\vec{a}(t)=e^{2 t} \vec{k}$, initial velocity $\vec{v}(0)=\vec{i}+\vec{j}+\frac{1}{2} \vec{k}$, and initial position $\vec{r}(0)=\frac{1}{4} \vec{k}$. Where is the particle at time $t=1$?.
A. $\left(0,0, \frac{1}{4} e^{2}\right)$
B. $\left(0,0, \frac{1}{2} e\right)$
C. $\left(1,0, \frac{1}{4} e^{2}\right)$
D. $\left(1,1, \frac{1}{4} e\right)$
E. $\left(1,1, \frac{1}{4} e^{2}\right)$
7. Determine if the following 3 limits exist. If the limit exists give its value, if the limit does not exist write DNE.
I. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+y^{2}}$
II. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}$
III. $\lim _{(x, y) \rightarrow(2,1)} \frac{x^{2}}{x^{2}+y^{2}}$
A. I. DNE, II. DNE, III. DNE
B. I. DNE, II. $\frac{1}{2}$, III. DNE
C. I. DNE, II. DNE, III. $\frac{4}{5}$
D. I. DNE, II. $\frac{1}{2}$, III. $\frac{4}{5}$
E. I. $\frac{1}{2}$, II. DNE, III. $\frac{4}{5}$
8. If $y=y(x, z)$ is defined implicitly by the equation

$$
x y+y^{3}=2 z y-z^{3}+1
$$

compute $\left.\frac{\partial y}{\partial z}\right|_{(x, y, z)=(1,0,1)}$
A. 3
B. 0
C. 1
D. 2
E. -2
9. Compute $\frac{\partial w}{\partial r}$ at $(r, s)=(1,0)$, given that $w=x^{2}-\frac{1}{4} y^{4}$ with $x=r^{3}+r s^{3}$ and $y=r^{2}+s e^{2 s}$.
A. 2
B. 3
C. 4
D. 5
E. 6
10. The rate of change of $f(x, y)=e^{x y}+y^{2}-x^{2}+3$ at $(2,0)$ in the direction from $(2,0)$ to $(8,8)$ is
A. -8
B. $-\frac{2}{5}$
C. -4
D. $-\frac{4}{5}$
E. 8
11. Given that $(0,0)$ and $(1,3)$ are critical points of the differentiable function f and given that $f_{x}(x, y)=y-3 x^{2}$ and $f_{y}(x, y)=x-\frac{1}{9} y^{2}$, then
A. $(0,0)$ is a saddle point; $(1,3)$ is a local maximum of f
B. $(0,0)$ is a local minimum of $f ;(1,3)$ is a saddle point
C. $(0,0)$ is a local minimum of $f ;(1,3)$ is a local maximum of f
D. $(0,0)$ is a saddle point; $(1,3)$ is a local minimum of f
E. $(0,0)$ is local maximum of $f ;(1,3)$ is a saddle point
12. Evaluate $\iint_{D} y^{2} d A$ where D is the triangle with vertices $(0,0),(1,1),(0,1)$.
A. $\frac{1}{3}$
B. $\frac{1}{6}$
C. $\frac{1}{2}$
D. $\frac{2}{3}$
E. $\frac{1}{4}$
13. Compute the area of the region of the plane $z+2 x+2 y=12$ that lies in the first octant.
A. 54
B. 28
C. 108
D. 36
E. 64
14. Transform into cylindrical coordinates and evaluate

$$
\int_{0}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{0}^{1-x^{2}-y^{2}} \sqrt{x^{2}+y^{2}} d z d y d x
$$

A. $\frac{2 \pi}{25}$
B. $\frac{\pi}{2}$
C. $\frac{2 \pi}{15}$
D. $\frac{\pi}{5}$
E. $\frac{3 \pi}{5}$
15. Compute $\iiint_{T} d V$ where T is the solid in the first octant bounded by the plane $x+2 y+z=4$ and the coordinate planes.
A. $\frac{3}{4}$
B. $\frac{2}{3}$
C. $\frac{16}{3}$
D. $\frac{5}{4}$
E. $\frac{9}{4}$
16. True or false: the vector field $\vec{F}=\left\langle 2 x z y+y e^{x y}, x^{2} z+x e^{x y}, x^{2} y\right\rangle$ is conservative.
A. TRUE
B. FALSE
17. Evaluate the line integral

$$
\int_{C} z^{2} d x+x^{2} d y+y^{2} d z
$$

where C is the line segment from $(1,0,0)$ to $(4,1,2)$.
A. 19/3
B. $23 / 3$
C. $29 / 3$
D. 11
E. $35 / 3$
18. Evaluate

$$
\int_{C} y^{3} d x-x^{3} d y
$$

where C is the positively oriented circle of radius 2 centered at the origin.
A. -12π
B. -8π
$C .24 \pi$
D. -24π
E. 12π
19. Evaluate

$$
\iint_{S} y d S
$$

where S is the portion of the cylinder $x^{2}+y^{2}=3$ that lies between the planes $z=0$ and $z=3$.
A. 0
B. 1
C. 2
D. 3
E. 4
20. Use the divergence theorem to evaluate

$$
\iint_{S} \vec{F} \cdot d \vec{S}
$$

where $\vec{F}=\left\langle x y,-(1 / 2) y^{2}, z\right\rangle$ and the surface S consists of three pieces: $z=4-3 x^{2}-$ $3 y^{2}, 1 \leq z \leq 4$ on the top, the cylinder $x^{2}+y^{2}=1,0 \leq z \leq 1$ on the sides, and $z=0$ on the bottom.
A. π
B. 2π
C. $(3 / 2) \pi$
D. $(5 / 2) \pi$
E. 0

