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1. Find an equation of the plane that contains the point (1, 2,−3) and the line with sym-

metric equations x− 2 = y − 1 =
z + 2

2
.

A. 5x+ y + z = 4

B. 2x− y + z = −3

C. 3x+ y − 2z = 11

D. 4x− 2y − 3z = 9

E. x+ y − 2z = 9

2. Identify the surface defined by the equation x2 + y2 + 2z − z2 = 0.

A. Ellipse

B. Hyperboloid of one sheet

C. Ellipsoid

D. Hyperboloid of two sheets

E. Paraboloid
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3. The vector field F(x, y) = 〈2xey + 1, x2ey〉 is conservative. Compute the work done by
the field in moving an object along the path C : r(t) = 〈cos(t), sin(t)〉, 0 ≤ t ≤ π.

A. −2

B. −1

C. −4

D. −8

E. −6

4. Compute ∫
C

(e2x + y2) dx+ (14xy + y2)dy,

where C is the boundary of the region bounded by the y-axis and the curve x = y − y2
oriented counterclockwise.

A. 1

B. 2

C. 4

D. 12

E. 24
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5. Find the linear approximation of f(x, y) = y
√
x at (4, 1).

A.
1

4
x+ 16y − 15

B.
1

4
x+ 8y − 7

C.
1

4
x+ 4y − 3

D.
1

4
x+ y + 1

E.
1

4
x+ 2y − 1

6. Compute curlF(π, 1, 1), where F = 〈x+ y, yz, sin(x)〉.

A. 〈1, 1,−1〉
B. 〈1, 1, 1〉
C. 〈−1, 1,−1〉
D. 〈−1,−1,−1〉
E. 〈1,−1,−1〉
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7. If f(x, y) = x sin(xy2), compute fyx(π, 1).

A. −8π

B. −6π

C. −2π

D. −π
E. −4π

8. Find the direction in which f(x, y, z) =
x

y
− yz decreases most rapidly at the point

(4, 1, 1)?

A.
1√
27
〈1,−5, 1〉

B.
1√
27
〈1,−5,−1〉

C.
1√
27
〈−1, 5,−1〉

D.
1√
27
〈−1, 5, 1〉

E.
1√
27
〈1, 5, 1〉
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9. Let M and m denote the maximum and the minimum values of f(x, y) = x2−2x+y2 +3
in the disk x2 + y2 ≤ 1. Find M +m.

A. 4

B. 5

C. 12

D. 8

E. 7

10. Evaluate the integral

∫∫
D

2π sin(x2) dA where D is the region in the xy-plane bounded

by the lines y = 0, y = x and x =
√
π.

A. 2π

B. π

C. 4π

D. 8π

E. π/2
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11. Evaluate the double integral ∫∫
D

2e(x
2+y2) dA,

where D is the region bounded by the x-axis and the curve y =
√

1− x2.

A. 8π(e− 1)

B. 2π(e− 1)

C. 4π(e− 1)

D. π(e− 1)

E. 16π(e− 1)

12. Compute the triple integral ∫∫∫
E

3y dV,

where E is a region under the plane x+ y + z = 2 in the first octant.

A. 4

B. 2

C. 6

D. 3

E. 1

7



13. The integral ∫ √2

0

∫ √2− x2

−
√

2− x2

∫ √
8− x2 − y2√

3x2 + 3y2
xy2z dz dy dx

when converted to cylindrical coordinates becomes

A.

∫ π/2

−π/2

∫ 2

0

∫ √8−r2
√
3r

r4z cos θ sin2 θ dz dr dθ

B.

∫ π/2

−π/2

∫ √2
0

∫ √8−r2
√
3r

r3z cos θ sin2 θ dz dr dθ

C.

∫ π/2

−π/2

∫ √2
0

∫ √8−r2
√
3r

r4z cos θ sin2 θ dz dr dθ

D.

∫ π

0

∫ √2
0

∫ √8−r2
√
3r

r4z cos θ sin2 θ dz dr dθ

E.

∫ π

0

∫ 2

0

∫ √8−r2
√
3r

r4z cos θ sin2 θ dz dr dθ

14. Convert the integral to spherical coordinates and compute it:

∫ 2

−2

∫ √4− x2

0

∫ √
8− x2 − y2√
x2 + y2

3 dz dy dx.

A. 2(
√

2− 1)π

B. 8(
√

2− 1)π

C. 10(
√

2− 1)π

D. 16(
√

2− 1)π

E. 12(
√

2− 1)π
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15. Compute the line integral ∫
C

F · dr,

where F = 〈xy, x+ y〉 and C is the curve y = x2 from (0, 0) to (1, 1).

A.
13

12

B.
21

12

C.
17

12

D.
5

12

E.
23

12

16. Let S be the part of the surface z = xy+1 that lies within the cylinder x2 +y2 = 1. Find
the area of the surface S.

A.

√
2

3
π − 2

3
π

B.

√
2

3
π − 1

3
π

C.
4
√

2

3
π − 1

3
π

D.
4
√

2

3
π − 2

3
π

E.
2
√

2

3
π − 2

3
π
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17. Find the surface area of the parametric surface r(u, v) = 〈u2, uv, v2/2〉 with 0 ≤ u ≤ 3,
0 ≤ v ≤ 1.

A. 12

B. 15

C. 18

D. 19

E. 27

18. Use Stokes’ Theorem to evaluate the integral

∫
C

y dx + z dy + x dz, where C is the in-

tersection of the surfaces x2 + y2 = 1 and x + y + z = 5. C is oriented counterclockwise
when viewed from above.

A. −8π

B. −6π

C. −π
D. −3π

E. −9π
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19. Evaluate the flux integral

∫∫
S

F · dS, where F(x, y, z) = 〈3xy2, x cos(z), z3〉 and S is the

complete boundary surface of the solid region bounded by the cylinder y2 + z2 = 2 and
the planes x = 1 and x = 3. S is oriented by the outward normal.

A. 9π

B. 12π

C. 14π

D. 18π

E. 24π

20. The position function of a Space Shuttle is r(t) = 〈t2,−t, 6〉, t ≥ 0. The International
Space Station has coordinates (16,−5, 6). In order to dock the Space Shuttle with the
Space Station the captain plans to turn off the engine so that the Space Shuttle coasts
into the Space Station. At what time should the captain turn off the engines? Assume
there are no other forces acting on the Space Shuttle other than the force of the engine.

A. 6

B. 8

C. 2

D. 4

E. 0
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