MA 26100
FINAL EXAM Form 01
MAY 1, 2019

NAME \qquad YOUR TA'S NAME \qquad

STUDENT ID \# \qquad RECITATION TIME \qquad

Be sure the paper you are looking at right now is GREEN! Write the following in the TEST/QUIZ NUMBER boxes (and blacken in the appropriate spaces below the boxes): 01

You must use a $\# 2$ pencil on the mark-sense sheet (answer sheet). On the mark-sense sheet, fill in your TA's name and the COURSE number. Fill in your NAME and STUDENT IDENTIFICATION NUMBER and blacken in the appropriate spaces. Fill in your four-digit SECTION NUMBER. If you do not know your section number, ask your TA. Sign the mark-sense sheet.

There are $\mathbf{2 0}$ questions, each worth 10 points. Blacken in your choice of the correct answer in the spaces provided for questions $1-20$. Do all your work in this exam booklet. Use the back of the test pages for scrap paper. Turn in both the scantron and the exam booklet when you are finished.

If you finish the exam before $5: 20$, you may leave the room after turning in the scantron sheet and the exam booklet. You may not leave the room before 3:50. If you don't finish before 5:20, you MUST REMAIN SEATED until your TA comes and collects your scantron sheet and your exam booklet.

EXAM POLICIES

1. Students may not open the exam until instructed to do so.
2. Students must obey the orders and requests by all proctors, TAs, and lecturers.
3. No student may leave in the first 20 min or in the last 10 min of the exam.
4. Books, notes, calculators, or any electronic devices are not allowed on the exam, and they should not even be in sight in the exam room. Students may not look at anybody else's test, and may not communicate with anybody else except, if they have a question, with their TA or lecturer.
5. After time is called, the students have to put down all writing instruments and remain in their seats, while the TAs will collect the scantrons and the exams.
6. Any violation of these rules and any act of academic dishonesty may result in severe penalties. Additionally, all violators will be reported to the Office of the Dean of Students.

I have read and understand the exam rules stated above:

1. Find an equation of the plane that contains the point $(1,2,-3)$ and the line with symmetric equations $x-2=y-1=\frac{z+2}{2}$.
A. $5 x+y+z=4$
B. $2 x-y+z=-3$
C. $3 x+y-2 z=11$
D. $4 x-2 y-3 z=9$
E. $x+y-2 z=9$
2. Identify the surface defined by the equation $x^{2}+y^{2}+2 z-z^{2}=0$.
A. Ellipse
B. Hyperboloid of one sheet
C. Ellipsoid
D. Hyperboloid of two sheets
E. Paraboloid
3. The vector field $\mathbf{F}(x, y)=\left\langle 2 x e^{y}+1, x^{2} e^{y}\right\rangle$ is conservative. Compute the work done by the field in moving an object along the path $C: \mathbf{r}(t)=\langle\cos (t), \sin (t)\rangle, 0 \leq t \leq \pi$.
A. -2
B. -1
C. -4
D. -8
E. -6
4. Compute

$$
\int_{C}\left(e^{2 x}+y^{2}\right) d x+\left(14 x y+y^{2}\right) d y
$$

where C is the boundary of the region bounded by the y-axis and the curve $x=y-y^{2}$ oriented counterclockwise.
A. 1
B. 2
C. 4
D. 12
E. 24
5. Find the linear approximation of $f(x, y)=y \sqrt{x}$ at $(4,1)$.
A. $\frac{1}{4} x+16 y-15$
B. $\frac{1}{4} x+8 y-7$
C. $\frac{1}{4} x+4 y-3$
D. $\frac{1}{4} x+y+1$
E. $\frac{1}{4} x+2 y-1$
6. Compute curl $\mathbf{F}(\pi, 1,1)$, where $\mathbf{F}=\langle x+y, y z, \sin (x)\rangle$.
A. $\langle 1,1,-1\rangle$
B. $\langle 1,1,1\rangle$
C. $\langle-1,1,-1\rangle$
D. $\langle-1,-1,-1\rangle$
E. $\langle 1,-1,-1\rangle$
7. If $f(x, y)=x \sin \left(x y^{2}\right)$, compute $f_{y x}(\pi, 1)$.
A. -8π
B. -6π
C. -2π
D. $-\pi$
E. -4π
8. Find the direction in which $f(x, y, z)=\frac{x}{y}-y z$ decreases most rapidly at the point $(4,1,1)$?
A. $\frac{1}{\sqrt{27}}\langle 1,-5,1\rangle$
B. $\frac{1}{\sqrt{27}}\langle 1,-5,-1\rangle$
C. $\frac{1}{\sqrt{27}}\langle-1,5,-1\rangle$
D. $\frac{1}{\sqrt{27}}\langle-1,5,1\rangle$
E. $\frac{1}{\sqrt{27}}\langle 1,5,1\rangle$
9. Let M and m denote the maximum and the minimum values of $f(x, y)=x^{2}-2 x+y^{2}+3$ in the disk $x^{2}+y^{2} \leq 1$. Find $M+m$.
A. 4
B. 5
C. 12
D. 8
E. 7
10. Evaluate the integral $\iint_{D} 2 \pi \sin \left(x^{2}\right) \mathrm{dA}$ where D is the region in the $x y$-plane bounded by the lines $y=0, y=x$ and $x=\sqrt{\pi}$.
A. 2π
B. π
C. 4π
D. 8π
E. $\pi / 2$
11. Evaluate the double integral

$$
\iint_{D} 2 e^{\left(x^{2}+y^{2}\right)} \mathrm{dA},
$$

where D is the region bounded by the x-axis and the curve $y=\sqrt{1-x^{2}}$.
A. $8 \pi(e-1)$
B. $2 \pi(e-1)$
C. $4 \pi(e-1)$
D. $\pi(e-1)$
E. $16 \pi(e-1)$
12. Compute the triple integral

$$
\iiint_{E} 3 y \mathrm{dV}
$$

where E is a region under the plane $x+y+z=2$ in the first octant.
A. 4
B. 2
C. 6
D. 3
E. 1
13. The integral

$$
\int_{0}^{\sqrt{2}} \int_{-\sqrt{2-x^{2}}}^{\sqrt{2-x^{2}}} \int_{\sqrt{3 x^{2}+3 y^{2}}}^{\sqrt{8-x^{2}-y^{2}}} x y^{2} z \mathrm{~d} z \mathrm{~d} y \mathrm{~d} x
$$

when converted to cylindrical coordinates becomes
A. $\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2} \int_{\sqrt{3} r}^{\sqrt{8-r^{2}}} r^{4} z \cos \theta \sin ^{2} \theta \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta$
B. $\int_{-\pi / 2}^{\pi / 2} \int_{0}^{\sqrt{2}} \int_{\sqrt{3} r}^{\sqrt{8-r^{2}}} r^{3} z \cos \theta \sin ^{2} \theta \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta$
C. $\int_{-\pi / 2}^{\pi / 2} \int_{0}^{\sqrt{2}} \int_{\sqrt{3} r}^{\sqrt{8-r^{2}}} r^{4} z \cos \theta \sin ^{2} \theta \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta$
D. $\int_{0}^{\pi} \int_{0}^{\sqrt{2}} \int_{\sqrt{3} r}^{\sqrt{8-r^{2}}} r^{4} z \cos \theta \sin ^{2} \theta \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta$
E. $\int_{0}^{\pi} \int_{0}^{2} \int_{\sqrt{3} r}^{\sqrt{8-r^{2}}} r^{4} z \cos \theta \sin ^{2} \theta \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta$
14. Convert the integral to spherical coordinates and compute it:

$$
\int_{-2}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{8-x^{2}-y^{2}}} 3 \mathrm{~d} z \mathrm{~d} y \mathrm{~d} x
$$

A. $2(\sqrt{2}-1) \pi$
B. $8(\sqrt{2}-1) \pi$
C. $10(\sqrt{2}-1) \pi$
D. $16(\sqrt{2}-1) \pi$
E. $12(\sqrt{2}-1) \pi$
15. Compute the line integral

$$
\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}
$$

where $\mathbf{F}=\langle x y, x+y\rangle$ and C is the curve $y=x^{2}$ from $(0,0)$ to $(1,1)$.
A. $\frac{13}{12}$
B. $\frac{21}{12}$
C. $\frac{17}{12}$
D. $\frac{5}{12}$
E. $\frac{23}{12}$
16. Let S be the part of the surface $z=x y+1$ that lies within the cylinder $x^{2}+y^{2}=1$. Find the area of the surface S.
A. $\frac{\sqrt{2}}{3} \pi-\frac{2}{3} \pi$
B. $\frac{\sqrt{2}}{3} \pi-\frac{1}{3} \pi$
C. $\frac{4 \sqrt{2}}{3} \pi-\frac{1}{3} \pi$
D. $\frac{4 \sqrt{2}}{3} \pi-\frac{2}{3} \pi$
E. $\frac{2 \sqrt{2}}{3} \pi-\frac{2}{3} \pi$
17. Find the surface area of the parametric surface $\mathbf{r}(u, v)=\left\langle u^{2}, u v, v^{2} / 2\right\rangle$ with $0 \leq u \leq 3$, $0 \leq v \leq 1$.
A. 12
B. 15
C. 18
D. 19
E. 27
18. Use Stokes' Theorem to evaluate the integral $\int_{C} y \mathrm{~d} x+z \mathrm{~d} y+x \mathrm{~d} z$, where C is the intersection of the surfaces $x^{2}+y^{2}=1$ and $x+y+z=5 . C$ is oriented counterclockwise when viewed from above.
A. -8π
B. -6π
C. $-\pi$
D. -3π
E. -9π
19. Evaluate the flux integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}(x, y, z)=\left\langle 3 x y^{2}, x \cos (z), z^{3}\right\rangle$ and S is the complete boundary surface of the solid region bounded by the cylinder $y^{2}+z^{2}=2$ and the planes $x=1$ and $x=3 . S$ is oriented by the outward normal.
A. 9π
B. 12π
C. 14π
D. 18π
E. 24π
20. The position function of a Space Shuttle is $\mathbf{r}(t)=\left\langle t^{2},-t, 6\right\rangle, t \geq 0$. The International Space Station has coordinates $(16,-5,6)$. In order to dock the Space Shuttle with the Space Station the captain plans to turn off the engine so that the Space Shuttle coasts into the Space Station. At what time should the captain turn off the engines? Assume there are no other forces acting on the Space Shuttle other than the force of the engine.
A. 6
B. 8
C. 2
D. 4
E. 0

