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1. Suppose ⟨a, b, c⟩ is a unit vector. Find an equation of the plane with normal vector ⟨a, b, c⟩
that contains (a, b, c).

A. x = at, y = bt, z = ct, where t is a real number.

B. x = a

C. ax+ by + cz = 1

D. ax+ by + cz = 0

E. a2x+ b2y + c2z = 1

2. Identify the quadric surface 16x2 + 4y2 − z2 − 64x+ 80 = 0.

A. Hyperboloid of two sheets

B. Ellipsoid

C. Elliptic cone

D. Elliptic paraboloid

E. Hyperboloid of one sheet
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3. A particle with initial velocity v⃗(0) = ⟨1,−1, 1⟩ has acceleration a⃗(t) = ⟨4t, 6t, 1⟩ Find
the speed of the particle after time t = 1.

A.
√
13

B.
√
14

C.
√
15

D. 4

E.
√
17

4. A blue plane B : x + 3y − 2z = 6 and a yellow plane Y : 2x + y + z = 3 intersect in
a green line G. A projectile at P (1,−2,−1) starts moving in the direction v⃗ = ⟨1, 2, 1⟩.
Which of the following statements is true?

A. The projectile intersects the blue plane first and then intersects the yellow plane

B. The projectile intersects the yellow plane first and then intersects the blue plane

C. The projectile intersects the green line first

D. The projectile intersects the blue plane and does not intersect the yellow plane

E. The projectile intersects the yellow plane and does not intersect the blue plane
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5. Find an equation of the tangent plane to the paraboloid

z = 1− 1

10

(
x2 + 4y2

)
,

at the point (1, 1, 1/2).

A. − 1
30
x+ 1

5
y + z = 2

3

B. 4
5
x+ 1

5
y + z = 3

2

C. 4
5
x+ 4

5
y + z = 21

10

D. 1
5
x+ 4

5
y + z = 3

2

E. 1
5
x+ 1

5
y + z = 9

10

6. What value of c makes the function

f(x, y) =

{
x2−y2

x−y
if x ̸= y

cx if x = y

continuous?

A. 2

B. 0

C. 16

D. 1

E. Such a c does not exist
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7. Let f(x, y) = x2ex+y. Find a unit vector in the direction of most rapid decrease for f
when (x, y) = (1, 1).

A. ⟨3e2, e2⟩

B. ⟨3,1⟩√
10

C. ⟨−3e2,−e2⟩√
10

D. ⟨−3,−1⟩√
10

E. ⟨−3e2,−e2⟩

8. Find the minimum value of f(x, y) = x+ y subject to the constraint x2 + 2y2 = 6

A. −2

B. −1

C. 3

D. 2

E. −3
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9. The integral in spherical coordinates∫ π
2

0

∫ π
2

π
4

∫ cscϕ

0

ρ2 sinϕ dρdϕdθ

when converted into Cartesian coordinates becomes

A.

∫ 1

0

∫ 1−x2

0

∫ √
x2+y2

0

dz dy dx

B.

∫ 1

0

∫ √
1−x2

0

∫ √
x2+y2

0

dz dy dx

C.

∫ 1

0

∫ √
1−x2

0

∫ 1

√
x2+y2

dz dy dx

D.

∫ 1

−1

∫ √
1−x2

0

∫ √
x2+y2

1

dz dy dx

E.

∫ 1

0

∫ √
1−x2

0

∫ x2+y2

0

dz dy dx

10. The double integral

∫ 1

−1

∫ √
1−x2

0

y2(x2 + y2)3 dydx when converted to polar coordinates

becomes

A.

∫ π

0

∫ 1

0

r9 sin2 θ drdθ

B.

∫ π
2

0

∫ 1

0

r9 sin2 θ drdθ

C.

∫ π

0

∫ 1

0

r8 sin θ drdθ

D.

∫ π
2

0

∫ 1

0

r8 sin θ drdθ

E.

∫ π
2

0

∫ 1

0

r8 sin2 θ drdθ
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11. Let F⃗ (x, y, z) = ⟨3x2yz−3y, x3z−3x, x3y+2z⟩. You may assume that F⃗ is conservative.

Calculuate the work done by F⃗ moving an object along C where C is the line segment
from (0,0,2) to (0,3,0).

A. 0

B. −9

C. 5

D. 12

E. −4

12. Evaluate ∮
C

x2y dx+ (y + y2) dy,

where C is the boundary of the region enclosed by y = x2 and x = y2 oriented counter-
clockwise.

A. − 2
35

B. − 3
35

C. − 4
35

D. − 6
35

E. − 8
35
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13. Compute the line integral ∫
C

(2x+ y) ds

where C is the line segment from (0,0) to (6,8).

A. 80

B. 120

C. 140

D. 100

E. 160

14. Suppose ϕ(x, y) = x2y − y2x is a scalar function. Let F⃗ (x, y) be the gradient field of

ϕ(x, y). Compute |F⃗ (1, 2)|

A. 5

B. 2

C. 3

D. 6

E. 8
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15. The surface parametrized by r⃗(u, v) = ⟨5 cosu sin v, 5 sinu sin v, 5 cos v⟩ is a

A. Plane

B. Ellipse

C. Sphere

D. Cylinder

E. Paraboloid

16. A normal vector to the surface r(u, v) = ⟨sinu, cosu sin v, sin v⟩ at (u, v) = (π/3, π/3) is

A. ⟨−3,−2, 1⟩
B. ⟨−1/8, 1/4, 1⟩
C. ⟨−3, 2, 1⟩
D. ⟨−3/8, 1/4, 2⟩
E. ⟨3/8, 1/4, 2⟩
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17. Let F(x, y, z) = ⟨x2y, y2z, xy2⟩, then curl F(3, 2, 1) is

A. ⟨12,−4,−5⟩
B. ⟨8,−4,−5⟩
C. ⟨8,−12, 4⟩
D. ⟨8,−4,−9⟩
E. ⟨12,−12, 4⟩

18. Let S be an open surface in R3 with boundary curve C where C is a circle in the xy−plane
with radius 1 and center (0, 0, 0) and is oriented counterclockwise when viewed from above.

Evaluate

∫
C

F⃗ · dr⃗ where F⃗ (x, y, z) is such that curl(F⃗ ) = ⟨1
2
,−3

2
, 1
4
⟩.

A. π
4

B. π
2

C. π

D. −3π
2

E. 2π
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19. For which of the following vector fields is

∫∫
S

F⃗ · n⃗ dS NOT equal to

∫∫∫
E

dV if S is the

closed boundary surface of the unit cube E = {(x, y, z) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤
1}?

A. F⃗ = ⟨x, x cos z, ey2−x⟩

B. F⃗ = ⟨3x,−y,−z⟩

C. F⃗ = ⟨x, z tanx, x ln y⟩

D. F⃗ = ⟨1
3
x, 1

3
y, 1

3
z⟩

E. F⃗ = ⟨xy2, yz2, zx2⟩

20. Find the outward flux of the vector field F⃗ = ⟨sin y, xz, 3z⟩ across the boundary of the
space between two spheres of radii 1 and 2, both centered at the origin.

A. 84π

B. 24π

C. 28π

D. 28
3
π

E. 12π
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