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1. Find the tangent plane to (x− 2)2 + 4y2 + z2 = 5 at the point (2, 1, 1).

A. 2x+ 4y + z = 9

B. y = z

C. y = 1

D. y = −z

4
E. y + z = x

F. 4y + z = 5

2. Let C be the (counterclockwise) boundary of the rectangle formed by the line segments from
(1, 1) to (4, 1) to (4, 3) to (1, 3) to (1, 1) (see the figure).

Compute the line integral ∮
C

F⃗ · dr⃗.

where F⃗ = ⟨xy, x2⟩.

A. 12

B. 3

C. 6

D. 0

E. 9

F. 15

2



3. This figure represents a vector field. Which one could it be?

A. F⃗ (x, y) = −x⃗ı− yȷ⃗

B. F⃗ (x, y) = x⃗ı− yȷ⃗

C. F⃗ (x, y) = x⃗ı+ yȷ⃗

D. F⃗ (x, y) = y⃗ı+ xȷ⃗

E. F⃗ (x, y) = −y⃗ı− xȷ⃗

F. F⃗ (x, y) = y⃗ı− xȷ⃗

4. Let F⃗ =

〈
tan−1

(
x

y

)
, ln(z − 1), y2

〉
. Compute ∇ · (∇× F⃗ ) at (0, 1, 2).

A. ⟨0, 0, 0⟩
B. 0

C. 2

D. ⟨1, 0, 0⟩
E. 1

F. ⟨1, 0, 1⟩
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5. The velocity of a moving object, for t ≥ 0, is r′(t) = ⟨60, 96− 32t⟩. Find r(1), if the initial
position is r(0) = ⟨0, 3⟩.

A. ⟨0, −29⟩
B. ⟨60, 67⟩
C. ⟨0, −32⟩
D. ⟨60, 64⟩
E. ⟨60, 0⟩
F. ⟨60, 83⟩

6. Let S be the part of the hemisphere z =
√

4− x2 − y2 that is inside of the cylinder

x2 + y2 = 1. If F⃗ = ⟨yz, −xz, xy⟩, compute the flux integral∫∫
S

(
∇× F⃗

)
· dS⃗

where the normal vector to the surface S is oriented upward.
Hint: use Stokes’ Theorem.

A. −
√
3

2
π

B. −2π
√
3

C. −π

2
D. −2π

E. 0

F. −π
√
3
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7. The graph below shows a curve on a circular cylinder. Which of the following vector valued
functions could describe this curve?

x y

z

A. r⃗(t) = ⟨cos(t), sin(2t), sin(t)⟩
B. r⃗(t) = ⟨cos(t), t, sin(t)⟩
C. r⃗(t) = ⟨cos(t), sin(t), t⟩
D. r⃗(t) = ⟨t cos(t), t, t sin(t)⟩
E. r⃗(t) = ⟨t, sin(t), cos(t)⟩
F. r⃗(t) = ⟨sin(t), sin(2t), cos(t)⟩

8. Compute the net outward flux of F⃗ =
〈
2y3(x2 + z2), ex+z − xy4, 2z −

√
x2 + y2

〉
across

the sides of the box {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 2, 0 ≤ z ≤ 3}.
Hint: There is a better way to do this problem than by computing six flux surface integrals.

A. 22

B. 6

C. 12

D. 0

E. 36

F. 24
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9. D is the ball of radius 1 centered at the origin. Compute the outward flux of F⃗ = xy2ı⃗ +
yz2ȷ⃗+ zx2k⃗ across the boundary of D.

A.
3π

4

B.
4π

5
C. π

D.
2π

3
E. 0

F.
π

2

10. Compute the line integral ∫
C

−y dx+ x dy + z dz

where C is the line segment from (2, 1, 2) to (8, 4, 4).

A. −24

B. 4

C. −10.5

D. 36

E. −2

F. 6
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11. Consider the limit lim
(x,y)→(0,0)

xy

x2 + y2
. Which of the following statements is true?

A. The limit does not exist, because the path-restricted limit approaching (0, 0) along
the diagonal y = x does not exist.

B. The limit is 0, even though the path-restricted limits approaching (0, 0) along the
x-axis and the y-axis are different.

C. The limit is 0, and the limit along any path approaching (0, 0) is also 0.

D. The limit does not exist, because the path-restricted limits approaching (0, 0) along
the x-axis and the y-axis are different.

E. The limit is 0, because the path-restricted limit approaching (0, 0) along the diagonal
y = x is 0.

F. The limit does not exist, even though the path-restricted limits approaching (0, 0)
along the x-axis and the y-axis are both 0.

12. Find the equation of the plane containing the points (1, 1, 1), (1, 2, 3), and (3, 1, 0).

A. x+ 2y − z = 2

B. x− 4y + 2z = −1

C. 2x+ y + z = 7

D. 2x− y + 4z = 5

E. 2x− 2y + z = 1

F. x+ 5y − z = 8
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13. Find the derivative of f(x, y, z) = xyz in the direction ı⃗− 2k⃗ at the point (1, 2, 3).

A.
2√
5

B.
√
5

C. 0

D. 5

E. 2

F.

√
5

2

14. Find the area of the surface z = x2 + y2 when x2 + y2 ≤ 1.

A.

√
5− 1

6
π

B. (
√
5− 1)π

C. (53/2 − 1)π

D.

√
2 + 1

6
π

E. (
√
2 + 1)π

F.
53/2 − 1

6
π
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15. Let C be the boundary of the triangle formed by the portion of the plane z = 6− 3x− y in
the first octant, oriented as shown in the figure. Compute∮

C

F⃗ · dr⃗

for the vector field F⃗ = ⟨y + 2z,−x,−2x⟩.
Hint: use Stokes’ Theorem.

x

y

z

A. 6

B. 3

C. 18

D. 9

E. 12

F. 0

16. Find the volume enclosed by the surfaces z = x2 + y2 and z = 12− x2 − y2.

A. 18π

B. 2
√
6π

C. 16
√
6π

D. 36π

E. 12
√
6π

F. 9π
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17. Find the area of the region D = {(r, θ) : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3+sin θ} in polar coordinates.

Hint: sin2 θ =
1− cos 2θ

2

A. 2π

B. 6π

C. 9π/2

D. 9π

E. 19π/2

F. 3π

18. Evaluate

∫ 1

0

∫ 1

√
y

yex
5

dx dy

A.
e

2

B.
e

10

C.
e− 1

10

D.
e− 1

5

E.
e

5

F.
e− 1

2
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19. For vector field F⃗ = ⟨z, −y2, 2x⟩, compute∫∫
S

F⃗ · n⃗ dS,

the flux through the surface S given by the graph of z = xy over the rectangle 0 ≤ x ≤ 3,
−1 ≤ y ≤ 1 with normal vectors oriented upward.

A. 18

B. 12

C. 3

D. 0

E. 9

F. 6

20. Find

∫∫
S

f(x, y, z) dS where f(x, y, z) = z+4x and S is the surface given by z = 8−4x−8y

with x ≥ 0, y ≥ 0, z ≥ 0.

A. 16
√
13

B. 48

C. 18
√
3

D. 27

E. 60

F. 32
√
5
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