1. Let
$$f(x,y) = \left(\frac{x^3}{2} + y\right)^{\frac{2}{3}}$$
. Find $\frac{\partial f}{\partial x}(4,-5)$.

- 2. Find $\frac{\partial w}{\partial r}$ when r=1, s=-1 if $w=e^{x+y+z}, x=r-s, y=\cos(r+s), z=\sin(r+s)$.
- 3. Find the equation of the tangent plane to the surface $y+z-\frac{x^2}{2}=1$ at (2,1,2).
- 4. Let $f(x, y, z) = x^2y + y^2z + z^2x$, and $P_0 = (1, 1, -1)$. Find the directional derivative of f at P_0 in the direction that the function increases most rapidly.
- 5. Classify the critical points of $f(x,y) = 4xy x^4 y^4$.
- 6. Find the extreme value of f(x, y, z) = x + 2y + 2z subject to the constraint $x^2 + y^2 + z^2 = 9$.
- 7. Evaluate $\int_0^1 \int_{\tan^{-1} y}^{\frac{\pi}{4}} \sec^4 x \, dx \, dy.$
- 8. Let D be the solid region bounded below by the paraboloid $z = x^2 + y^2$ and above by z = 4. Evaluate the total mass of D if the density function is $\delta(x, y, z) = \sqrt{x^2 + y^2}$.
- 9. Evaluate the integral $\iiint_D z \, dv$, where D is the solid region bounded above by the sphere $\rho = 1$ and below by the cone $\phi = \frac{\pi}{6}$.
- 10. Let D be the image of the rectangle $\{(u,v)|-1\leq u\leq 2,\ 0\leq v\leq 2\}$ under the transformation $x=2u+3v,\ y=u-v.$ Evaluate $\iint_D \frac{x-2y}{5}\,dA.$
- 11. The mass density at a given point of a thin wire C is $\delta(x, y, z) = x$. If C is parametrized by $\mathbf{r}(t) = \langle e^t, 2t, 2e^{-t} \rangle$, $0 \le t \le 1$, find the mass of the wire.
- 12. Let \mathbb{F} be a conservative vector field given by $\mathbb{F} = \langle 2xy, x^2 + \cos(y + z^2), 3z^2 + 2z\cos(y + z^2) \rangle$. Find f such that $\nabla f = \mathbb{F}$.
- 13. Let R be the region bounded by $y=x^2$ and $x=y^2$, and C the boundary of R. Compute $\oint_C \mathbb{F} \cdot d\mathbf{r}$ for $\mathbb{F} = \langle 2y + e^x, 3x + \sin y \rangle$.