1. Find the limit of each convergent sequence.

(a)
$$a_n = \frac{1 - 10n + n^2}{3n^2 - 8}$$
.

(b)
$$a_n = n - \sqrt{n^2 - 2n}$$
.

(c)
$$a_n = \frac{\sin^2(\frac{1}{n})}{1 - \cos(\frac{3}{n})}$$
.

- 2. Find the sum of the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{3}{2^n}$.
- 3. Determine which of the series converge absolutely, converge conditionally, or diverge. Give reason for your answers.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \tan^{-1} n}{n^2 + 1}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n 2^n 3^n}{n^n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n!)^2}{(2n)!}$$

(d)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n(\ln n)^2}$$

(e)
$$\sum_{n=1}^{\infty} \frac{\cos n\pi}{\sqrt{n}}$$

- 4. Find the Taylor polynomial of $(1+x^2)\cos x$ of order 7 at x=0.
- 5. Find the interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(2x-3)^n}{n5^n}.$$

6. The approximation $\cos x \sim 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots + (-1)^n \frac{x^{2n}}{(2n)!}$ is used. Determine the smallest n needed to estimate $\cos(0.1)$ with an error of less than 10^{-12} .

7. Find a series solution for y' - xy = 0, y(0) = 1.

8.
$$\lim_{(x,y)\to(1,1)} \frac{x-y}{x^2-y^2}$$
.

9. Compute $xf_x + yf_y + zf_z$. f(x, y, z) = xy + yz + zx.

10. Find $\frac{dw}{dt}$ at t = 0 if $w = \sin(xy + \pi)$, $x = e^t$, and $y = \ln(t + 1)$.