(15 pts) 1) If $f(x, y, z) = xy + z^2$ find

- a) ∇f at (1, 2, 1),
- b) the direction in which f changes most rapidly at (1, 2, 1),
- c) the equation of the tangent plane to $xy + z^2 = 4$ at (1, 2, 1),
- d) the normal line to $xy + z^2 = 4$ at (1, 2, 1).

(15 pts) 2) a) Find the maxima, minima, and points of inflection of $f(x,y) = x^3 - y^3 - 2xy + 6$.

b) Find
$$\frac{\partial w}{\partial x}$$
, at $(x, y) = (0, 0)$, if $w = u^2 + \frac{u}{v}$, $u = x + 2y + 1$, and $v = 2x - y + 2$.

(20 pts) 3) Set up but do not evaluate integrals for the following:

- a) The mass of the plate bounded by $y = 4 x^2$ and y = 3x if the density $\rho = 2xy$,
- b) the average distance from a point p, on the disk $x^2 + y^2 = 1$, to the origin,
- c) the volume bounded by $x^2 + y^2 + z^2 = 9$, $x^2 + y^2 + z^2 = 4$, inside the case $z = \sqrt{x^2 + y^2}$,
- d) the center of mass of the area bounded by $y = 2\cos x$, y = 0, $0 \le x \le \frac{\pi}{2}$ if the density $\rho = xe^y$.

(15 pts) 4) a) Evaluate by changing the order of integration

$$\int_0^\infty \int_{x^{\frac{1}{3}}}^2 \frac{dy \, dx}{y^4 + 1},$$

b) Find the volume of the smaller region cut from $x^2 + y^2 + z^2 \le 4$ by the plane z = 1.

(15 pts) 5) If $f(x, y, z) = e^x \cos(y + z)$ find

- a) the linearization of f at $(0, \frac{\pi}{2}, 0)$,
- b) the error if the function is replaced by its linearization provided $|x| < \frac{1}{100}, |y \frac{\pi}{2}| \le \frac{1}{100}, \text{ and } |z| \le \frac{1}{100}.$

(10 pts) 6) Find the absolute maximum and minimum of $f(x,y) = x^2 + xy + y^2 - 6x + 2$ on $\{(x,y)|0 \le x \le 5, -3 \le y \le 0\}$.

(10 pts) 7) Find the maximum value of

$$f(x, y, z) = x - 2y + 5z$$
 on $x^2 + y^2 + z^2 = 30$.