Federico Tournier

Name: _____

1. Find the point of intersection of the two lines

$$x = 2$$

$$x = 1 + s$$

a)
$$y = 3 - 3t$$
 $y = 4 + s$

$$y = 4 + s$$

$$z = -2 - 2t$$

$$z = -2 - 2t \qquad \qquad z = -1 + s$$

b) Find the equation of the plane determined by the two lines.

2) Find the distance from the point (0,1,1) to the plane 2x + y + z = 4.

3) Find the parametric equation of the tangent line to the curve

$$r(t) = (\sin t, t, e^t)$$
 at $t = 0$

at
$$t = 0$$

- 4) Let $r(t) = (t, t^3, t)$ for $t \in [0, 3]$
 - a) Find the velocity and acceleration vector when t = 1.
 - b) Find the curvature at the point (1, 1, 1).
 - c) Calculate the normal and tangential components of the acceleration vector at the point (1, 1, 1).

- 5) A particle moves on the graph of $y = x^4$ from left to right at a constant speed of 2.
 - a) Find the velocity vector at the point (1, 1).
 - b) Find the acceleration vector at the point (1,1).

- 6) A projectile is fired at an initial speed of 80 feet/sec and aimed at a tangent 100 feet down range (gravity is 32 feet/sec).
 - a) What are the two possible launching angles?
 - b) Using the smaller of the above angles, will the projectile clear a wall which is 10 feet high located 70 feet down range? Explain