- (10 pts) 1) Find $\frac{\partial w}{\partial x}$ at (x,y,z)=(2,1,-1) if $w=\frac{p-q}{r}\ ,\ p=-x+y+z,$ $q=x-y+z\ ,\ \text{ and } r=x+y+z.$
- (10 pts) 2) If $f(x, y, z) = y^2 + z \ln x$ find
 - a) ∇f at (1, 1, 1),
 - b) the direction in which f changes most rapidly at (1, 1, 1),
 - c) the equation of the tangent plane to $y^2 + z \ln x = 1$ at (1, 1, 1).
- (10 pts) 3) Find all maxima, minima, and points of inflection of $f(x,y) = x^3 y^3 2xy + 6$.
- (10 pts) 4) Evaluate by reversing the order of integration: $\int_0^4 \int_y^2 e^{x^2} dx \, dy.$
- (10 pts) 5) Find the average value of $f(x, y) = y \cos x$ in the area bounded by $y = 0, y = \sin x, 0 \le x \le \pi$.
- (10 pts) 6) If $f(x,y) = y \sin x$ find
 - a) The linear approximation near (0,0).
 - b) The quadratic approximation near (0,0).
 - c) An estimate of the error made if f is replaced by its quadratic approximation. Assume $|\Delta x| < 10^{-2}$ and $|\Delta y| < 10^{-2}$.
- (10 pts) 7) Find the absolute maximum and minimum of $f(x,y)=x^2+xy+y^2-6x+2$ on $\{(x,y)|0\leq\lambda\leq 5,\ -3\leq y\leq 0\}.$
- (10 pts) 8) Find the largest product of the positive numbers x, y, and z if $x + y + z^2 = 16$.
- (20 pts) 9) Set up but do not evaluate integrals for the following
 - a) The area inside $t = 2(1 + \sin \theta)$ and outside r = 1,
 - b) I_z (the moment of inertia with respect to the z-axis) of the tetrahedan with corners (0,0,0), (1,0,0), (0,2,0), and (0,0,2) if the density $\delta = xy$.
 - c) The volume between the cylinders $x^2 + y^2 = 4$ and $x^2 + y^2 = 1$ inside $x^2 + y^2 + z^2 = 9$.
 - d) The volume inside $z = \sqrt{x^2 + y^2}$ and $x^2 + y^2 + z^2 = 9$.
 - e) The area for the smaller part of the region cut from $x^2 + 4y^2 = 12$ by $x = 4y^2$.