1. Determine whether the following series converges absolutely, converges conditionally, or diverges.

\[\sum_{k=1}^{\infty} \frac{(-1)^k}{k^{12} + 16} \]

Find \(\lim_{k \to \infty} a_k \). Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

A. \(\lim_{k \to \infty} a_k = \) ____________

B. The limit does not exist.

Now, let \(\sum a_k \) denote \(\sum_{k=1}^{\infty} \frac{(-1)^k k^5}{\sqrt{k^{12} + 16}} \). What can be concluded from this result using the Divergence Test?

A. The series \(\sum a_k \) must diverge.
B. The series \(\sum |a_k| \) must converge.
C. The series \(\sum |a_k| \) must diverge.
D. The series \(\sum a_k \) must converge.
E. The Divergence Test is inconclusive.

Are the terms of the sequence \(|a_k| \) decreasing after some point?

yes
no

Let \(\sum a_k \) denote \(\sum_{k=1}^{\infty} \frac{(-1)^k k^5}{\sqrt{k^{12} + 16}} \). What can be concluded from these results using the Alternating Series Test?

A. The series \(k^6 \) must diverge.
B. The series \(\sum a_k \) must diverge.
C. The series \(k^6 \) must converge.
D. The series \(\sum a_k \) must converge.
E. The Alternating Series Test does not apply to this series.

Does the series \(\sum |a_k| \) converge?

A. yes, as can be determined by the Limit Comparison Test
B. no, as can be determined by the Limit Comparison Test
C. no, because of the Divergence Test
Does the series \(\sum a_k \) converge absolutely, converge conditionally, or diverge?

A. The series converges conditionally because \(\sum |a_k| \) converges but \(\sum a_k \) diverges.

B. The series diverges because \(\sum |a_k| \) diverges.

C. The series converges conditionally because \(\sum a_k \) converges but \(\sum |a_k| \) diverges.

D. The series converges absolutely because \(\sum |a_k| \) converges.

E. The series diverges because \(\lim_{k \to \infty} a_k \neq 0 \).

Answers

A. \(\lim_{k \to \infty} a_k = 0 \)

E. The Divergence Test is inconclusive.

yes

D. The series \(\sum a_k \) must converge.

B. no, as can be determined by the Limit Comparison Test

C. The series converges conditionally because \(\sum a_k \) converges but \(\sum |a_k| \) diverges.

2. Find the power series representation for \(g \) centered at 0 by differentiating or integrating the power series for \(f \) (perhaps more than once). Give the interval of convergence for the resulting series.

\[g(x) = \ln(1 - 9x) \text{ using } f(x) = \frac{1}{1 - 9x} \]

Which of the following is the power series representation for \(g \) centered at 0?

A. \[-\frac{1}{9} \sum_{k=1}^{\infty} \frac{(9x)^k}{k} \]

C. \[-9 \sum_{k=1}^{\infty} \frac{(9x)^k}{k} \]

The interval of convergence is \(\left(-\frac{1}{9}, \frac{1}{9} \right) \).

(Simplify your answer. Type your answer in interval notation.)

Answers

D. \[-\sum_{k=1}^{\infty} \frac{(9x)^k}{k} \left(-\frac{1}{9}, \frac{1}{9} \right) \]
3. Find the interval of convergence of the series.

\[\sum_{n=0}^{\infty} \frac{(x - 4)^n}{n^2 6^n} \]

- A. \(3 \leq x \leq 5 \)
- B. \(-10 < x < 10 \)
- C. \(x < 10 \)
- D. \(-2 \leq x \leq 10 \)

Answer: D. \(-2 \leq x \leq 10 \)

4. For the following telescoping series, find a formula for the nth term of the sequence of partial sums \(\{S_n\} \). Then evaluate \(\lim_{n \to \infty} S_n \) to obtain the value of the series or state that the series diverges.

\[\sum_{k=1}^{\infty} \frac{16}{(4k-1)(4k+3)} \]

\(S_n = \) __________

Select the correct choice and fill in any answer boxes in your choice below.

- A. \(\sum_{k=1}^{\infty} \frac{16}{(4k-1)(4k+3)} = \) __________ (Simplify your answer.)
- B. The series diverges.

Answers: \(\frac{4}{3} - \frac{4}{4n+3} \)

A. \(\sum_{k=1}^{\infty} \frac{16}{(4k-1)(4k+3)} = \frac{4}{3} \) (Simplify your answer.)
5. Find the Taylor polynomials \(p_1, \ldots, p_4 \) centered at \(a = 0 \) for \(f(x) = \cos(-2x) \).

\[
p_1(x) = \quad \quad \\
p_2(x) = \quad \quad \\
p_3(x) = \quad \quad \\
p_4(x) = \quad \quad \\
\]

Answers
\[
1 - 2x^2 \\
1 - 2x^2 \\
1 - 2x^2 + \frac{2}{3}x^4 \\
\]

6. Use the Ratio Test to determine if the series converges.

\[
\sum_{k=1}^{\infty} \frac{6(k!)^2}{7(2k)!}
\]

Select the correct choice below and fill in the answer box to complete your choice.

- **A.** The series diverges because \(r = \quad \quad \).
- **B.** The series converges because \(r = \quad \quad \).
- **C.** The Ratio Test is inconclusive because \(r = \quad \quad \).

Answer: B. The series converges because \(r = \frac{1}{4} \).
7. a. Find the nth-order Taylor polynomials of the given function centered at the given point \(a \), for \(n = 0, 1, \) and 2.

\[f(x) = \sin x, \quad a = \frac{3\pi}{4} \]

b. Graph the Taylor polynomials and the function.

a. Find the Taylor polynomial of order 0. Choose the correct answer below.

- A. \(p_0(x) = \frac{\sqrt{2}}{2} \left(x - \frac{3\pi}{4} \right) \)
- B. \(p_0(x) = \frac{\sqrt{2}}{2} \)
- C. \(p_0(x) = 0 \)
- D. \(p_0(x) = 1 \)

Find the Taylor polynomial of order 1.

- A. \(p_1(x) = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} \left(x - \frac{3\pi}{4} \right) \)
- B. \(p_1(x) = \frac{\sqrt{2}}{2} \)
- C. \(p_1(x) = \frac{\sqrt{2}}{2} \left(x - \frac{3\pi}{4} \right) - \frac{\sqrt{2}}{2} \left(x - \frac{3\pi}{4} \right)^2 \)
- D. \(p_1(x) = \left(x - \frac{3\pi}{4} \right) \)

Find the Taylor polynomial of order 2.

- A. \(p_2(x) = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} \left(x - \frac{3\pi}{4} \right) - \frac{\sqrt{2}}{4} \left(x - \frac{3\pi}{4} \right)^2 \)
- B. \(p_2(x) = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{4} \left(x - \frac{3\pi}{4} \right) \)
- C. \(p_2(x) = \frac{\sqrt{2}}{2} \left(x - \frac{3\pi}{4} \right) - \frac{\sqrt{2}}{2} \left(x - \frac{3\pi}{4} \right)^2 - \frac{\sqrt{2}}{4} \left(x - \frac{3\pi}{4} \right)^3 \)
- D. \(p_2(x) = \left(x - \frac{3\pi}{4} \right) - \frac{\sqrt{2}}{2} \left(x - \frac{3\pi}{4} \right)^2 \)

b. Choose the correct graph below.

\[f(x) = \sin x, \quad a = \frac{3\pi}{4} \]

- A.
- B.
8. Use the Comparison Test or the Limit Comparison Test to determine whether the following series converges.

\[\sum_{n=1}^{\infty} \frac{1}{9\sqrt{n} + 3\sqrt{n}} \]

Choose the correct answer below.

- **A.** The Limit Comparison Test with \(\frac{1}{\sqrt{n}} \) shows that the series converges.
- **B.** The Comparison Test with \(\sqrt{n} \) shows that the series diverges.
- **C.** The Limit Comparison Test with \(\frac{1}{3\sqrt{n}} \) shows that the series converges.
- **D.** The Comparison Test with \(\frac{3}{\sqrt{n}} \) shows that the series converges.
- **E.** The Limit Comparison Test with \(\frac{1}{3\sqrt{n}} \) shows that the series diverges.
- **F.** The Limit Comparison Test with \(\frac{1}{\sqrt{n}} \) shows that the series diverges.

Answer:
F. The Limit Comparison Test with \(\frac{1}{\sqrt{n}} \) shows that the series diverges.
9. Use the Root Test to determine whether the series converges.

\[\sum_{k=1}^{\infty} \left(\frac{k}{k+1} \right)^{3k^2} \]

Select the correct choice below and fill in the answer box to complete your choice.
(Type an exact answer in terms of e.)

- **A.** The series converges because \(\rho = \frac{1}{e^3} \).
- **B.** The series diverges because \(\rho = \) \(\) .
- **C.** The Root Test is inconclusive because \(\rho = \) \(\) .

Answer: A. The series converges because \(\rho = \frac{1}{e^3} \).

10. Evaluate the series or state that it diverges.

\[\sum_{k=1}^{\infty} \left[\frac{2}{5} \left(\frac{1}{7} \right)^k + \frac{3}{5} \left(\frac{7}{9} \right)^k \right] \]

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

- **A.** \(\sum_{k=1}^{\infty} \left[\frac{2}{5} \left(\frac{1}{7} \right)^k + \frac{3}{5} \left(\frac{7}{9} \right)^k \right] = \) \(\) \(\) (Simplify your answer.)
- **B.** The series diverges.

Answer: A. \(\sum_{k=1}^{\infty} \left[\frac{2}{5} \left(\frac{1}{7} \right)^k + \frac{3}{5} \left(\frac{7}{9} \right)^k \right] = \frac{13}{6} \) (Simplify your answer.)
11. Use the Divergence Test to determine whether the following series diverges or state that the test is inconclusive.

\[\sum_{k=1}^{\infty} \frac{7k^2}{k!} \]

Choose the correct answer below.

- **A.** The series converges because \(\lim_{k \to \infty} \frac{7k^2}{k!} \neq 0 \).
- **B.** The series diverges because \(\lim_{k \to \infty} \frac{7k^2}{k!} = 0 \).
- **C.** The series converges because \(\lim_{k \to \infty} \frac{7k^2}{k!} = 0 \).
- **D.** The series diverges because \(\lim_{k \to \infty} \frac{7k^2}{k!} \neq 0 \).
- **E.** The Divergence Test is inconclusive.

Answer: E. The Divergence Test is inconclusive.
12. Use the Integral Test to determine whether the following series converges after showing that the conditions of the Integral Test are satisfied.

\[\sum_{k=1}^{\infty} \frac{2e^k}{1 + e^{2k}} \]

Determine which of the necessary properties of the function that will be used for the Integral Test has. Select all that apply.

- [] A. The function \(f(x) \) is a decreasing function for \(x \geq 1 \).
- [] B. The function \(f(x) \) is an increasing function for \(x \geq 1 \).
- [] C. The function \(f(x) \) is continuous for \(x \geq 1 \).
- [] D. The function \(f(x) \) has the property that \(a_k = f(k) \) for \(k = 1, 2, 3, \ldots \).
- [] E. The function \(f(x) \) is negative for \(x \geq 1 \).
- [] F. The function \(f(x) \) is positive for \(x \geq 1 \).

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

- [] A. The series converges. The value of the integral \(\int_{1}^{\infty} \frac{2e^x}{1 + e^{2x}} \, dx \) is ____________________.
 (Type an exact answer.)

- [] B. The series diverges. The value of the integral \(\int_{1}^{\infty} \frac{2e^x}{1 + e^{2x}} \, dx \) is ____________________.
 (Type an exact answer.)

- [] C. The Integral Test does not apply to this series.

Answers:

- A. The function \(f(x) \) is a decreasing function for \(x \geq 1 \).
- C. The function \(f(x) \) is continuous for \(x \geq 1 \).
- D. The function \(f(x) \) has the property that \(a_k = f(k) \) for \(k = 1, 2, 3, \ldots \).
- F. The function \(f(x) \) is positive for \(x \geq 1 \).

A. The series converges. The value of the integral \(\int_{1}^{\infty} \frac{2e^x}{1 + e^{2x}} \, dx \) is \(2 \left(\frac{\pi}{2} - \tan^{-1} e \right) \).

(Type an exact answer.)