## Answer to GREEN Exam 2

1. D
2. C
3. A
4. E
5. $B$
6. E
7. A
8. (1) $T\left(t^{2}-1\right)=-1+3 t^{2}$
(2) $[T]_{\mathcal{B}}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4\end{array}\right]$
9. (1) $\lambda_{1}=4$, a basis is $\left\{\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]\right\} \quad \lambda_{2}=\lambda_{3}=1$, a basis is $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]\right\}$.

Answer may vary!
(2) $P=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & 2\end{array}\right], D=\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.

Answer may vary!
10. (1) $\lambda_{1}=1, \boldsymbol{v}_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right] \quad \lambda_{2}=-2, \boldsymbol{v}_{2}=\left[\begin{array}{c}5 \\ -2\end{array}\right]$.

Answer may vary!
(2) $\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]=c_{1}\left[\begin{array}{c}e^{t} \\ -e^{t}\end{array}\right]+c_{2}\left[\begin{array}{c}5 e^{-2 t} \\ -2 e^{-2 t}\end{array}\right]$ for arbitrary constants $c_{1}$ and $c_{2}$.

Answer may vary!
(3) $c_{1}=2, c_{2}=-1, x(1)+y(1)=-3 e^{-2}$.

