MA162 — EXAM I — FALL 2016 — SEPTEMBER 22, 2016 TEST NUMBER 01

INSTRUCTIONS:

- 1. Do not open the exam booklet until you are instructed to do so.
- 2. Before you open the booklet fill in the information below and use a # 2 pencil to fill in the required information on the scantron.
- 3. MARK YOUR TEST NUMBER ON YOUR SCANTRON
- 4. Once you are allowed to open the exam, make sure you have a complete test. There are 7 different test pages (including this cover page).
- 5. Do any necessary work for each problem on the space provided or on the back of the pages of this test booklet. Circle your answers on this test booklet.
- 6. Each problem is worth 100/12 points. The maximum possible score is 100 points. No partial credit.
- 7. Do not leave the exam room during the first 20 minutes of the exam.
- 8. If you do not finish your exam in the first 50 minutes, you must wait until the end of the exam period to leave the room.
- 9. After you have finished the exam, hand in your scantron and your test booklet to your recitation instructor.

DON'T BE A CHEATER:

- 1. Do not give, seek or obtain any kind of help from anyone to answer questions on this exam. If you have questions, consult only your instructor.
- 2. Do not look at the exam or scantron of another student.
- 3. Do not allow other students to look at your exam or your scantron.
- 4. You may not compare answers with anyone else or consult another student until after you have finished your exam, handed it in to your instructor and left the room.
- 5. Do not consult notes or books.
- 6. Do not handle phones or cameras, calculators or any electronic device until after you have finished your exam, handed it in to your instructor and left the room.
- 7. After time is called, the students have to put down all writing instruments and remain in their seats, while the TAs collect the scantrons and the exams.
- 8. Anyone who violates these instructions will have committed an act of academic dishonesty. Penalties for academic dishonesty include an F in the course. All cases of academic dishonesty will be reported to the Office of the Dean of Students.

I have read and understand the above statements regarding academic dishonesty:

STUDENT NAME: SOLUTIONS.	
STUDENT SIGNATURE:	
STUDENT ID NUMBER:	· · · · · · · · · · · · · · · · · · ·
SECTION NUMBER AND RECITATION INSTRUCTOR:	

1. Find the center and the radius of the sphere
$$4x^2 + 4y^2 + 4z^2 - 5x + 10y - 6z = 0$$

A. Center
$$(\frac{5}{8}, -\frac{5}{4}, \frac{3}{4})$$
 and radius $\frac{\sqrt{135}}{8}$

B. Center $(\frac{5}{8}, -\frac{5}{4}, \frac{3}{4})$ and radius $\frac{\sqrt{161}}{8}$

C. Center $(\frac{5}{8}, -\frac{5}{4}, -\frac{3}{4})$ and radius $\frac{\sqrt{161}}{8}$

D. Center $(-\frac{5}{8}, \frac{5}{4}, -\frac{3}{4})$ and radius $\frac{\sqrt{135}}{8}$

E. Center $(-\frac{5}{8}, \frac{5}{4}, -\frac{3}{4})$ and radius $\frac{\sqrt{161}}{8}$

A. Center
$$(\frac{5}{8}, -\frac{5}{4}, \frac{3}{4})$$
 and radius $\frac{\sqrt{135}}{8}$

Divide the equation by 4.

(B.) Center $(\frac{5}{8}, -\frac{5}{4}, \frac{3}{4})$ and radius $\frac{\sqrt{161}}{8}$

C. Center $(\frac{5}{8}, -\frac{5}{4}, -\frac{3}{4})$ and radius $\frac{\sqrt{161}}{8}$

D. Center $(-\frac{5}{8}, \frac{5}{4}, -\frac{3}{4})$ and radius $\frac{\sqrt{135}}{8}$

E. Center $(-\frac{5}{8}, \frac{5}{4}, -\frac{3}{4})$ and radius $\frac{\sqrt{161}}{8}$
 $\frac{3^2 - 3_2}{3} = (3 - 3/4)^2 - \frac{9}{16}$

So the equation because.
$$(x-5/8)^2 + (y+5/4)^2 + (3-3/4)^2 = \frac{25}{64} + \frac{25}{16} + \frac{9}{16} = \frac{161}{64}$$
Radius ($\sqrt{161}$, Center ($\sqrt{5}/9$, $-5/4$, $\sqrt{3}/4$)

2. The measure of the angle (in radians) between the vectors

$$\vec{u} = 2\vec{i} + \vec{j} + \vec{k} \text{ and } \vec{v} = -\sqrt{\frac{6}{5}} \vec{i} - \vec{j} + \vec{k} \text{ is equal to}$$

$$\vec{u}', \vec{v}' = |\vec{u}|, |\vec{v}'|, \quad cos \quad 0$$

$$\vec{u}', \vec{v}' = -2\sqrt{\frac{6}{5}} - 1 + 1 = -2\sqrt{\frac{6}{5}}.$$

$$\vec{v} \cdot \vec{v}' = -2\sqrt{\frac{6}{5}} - 1 + 1 = -2\sqrt{\frac{6}{5}}.$$

$$\vec{v} \cdot \vec{v}' = -2\sqrt{\frac{6}{5}} - 1 + 1 = -2\sqrt{\frac{6}{5}}.$$

$$\vec{v} \cdot \vec{v}' = -2\sqrt{\frac{6}{5}} - 1 + 1 = -2\sqrt{\frac{6}{5}}.$$

$$\vec{v} \cdot \vec{v}' = -2\sqrt{\frac{6}{5}}.$$

$$\vec{v} \cdot \vec{v} \cdot \vec{v} = -2\sqrt{\frac{6}{5}}.$$

$$\vec{v} \cdot$$

D.
$$2\sqrt{3}$$
 $\vec{P}\vec{Q} \times \vec{P}\vec{P} = \vec{i} \cdot \vec{j} \cdot \vec{k}$

E. $3\sqrt{2}$
 $\vec{i} \cdot (4) - \vec{j} \cdot (-4) + \vec{k} \cdot (0) = 4\vec{i} \cdot 4\vec{j}$
 $|\vec{P}\vec{Q} \times \vec{P}\vec{P}| = \sqrt{16+16} = \sqrt{2\times16} = 4\sqrt{2}$

Ċ.

4. The area of the region bounded by y = x(2-x) and $y = x^2$ is equal to

$$A = \int_{0}^{1} (2x - x^{2} - x^{2}) dx = \int_{0}^{1} (2x - 2x^{2}) dx = 0; \quad 2 - x = x$$

$$= 2 \left(\frac{x_{1}^{2} - x_{3}^{3}}{2} \right) \Big|_{0}^{1} = 2 \left(\frac{x_{2} - \frac{1}{3}}{2} \right) = \frac{1}{3}$$

5. Find the volume of the solid whose base is the region bounded by $y = x^2$ and y = 1, and whose cross-sections are squares that are perpendicular to the y-axis.

- D. 6
- _____
- E. 3

leus the of ten base: 2 /9.

Area of ten cross sechu = 47.

Volume of ten Schol = Si 4 y dy = 2.

6. The volume of the solid obtained by rotating the region bounded by y = x + 1, x = 0 and y = 3 about the y-axis is equal to

- B. $\frac{4\pi}{3}$
- C. $\frac{5\pi}{3}$
- D. $\frac{7\pi}{3}$
- E. $\frac{8\pi}{3}$

 $V = \int_{1}^{3} \pi (y-1)^{2} dy = \pi \int_{0}^{2} y^{2} dy$

$$= T_3 \cdot y^3 \Big|_0^2 = 8 T_3$$

A.
$$2\pi \int_0^1 (y^{\frac{3}{2}} - \frac{1}{2}y^2) dy$$

B.
$$2\pi \int_0^1 (y^{\frac{5}{2}} - \frac{1}{2}y^{\frac{3}{2}}) dy$$

D.
$$2\pi \int_0^1 (y^{\frac{3}{2}} - \frac{1}{2}y) \ dy$$

E.
$$2\pi \int_0^1 y^2 (y^{\frac{1}{2}} - \frac{1}{2}y) \ dy$$

$$V = 2\pi \int_{0}^{1} y (\sqrt{y} - y^{2}) dy$$

$$= 2\pi \int_{0}^{1} (y^{3} - y^{3}) dy$$

8. A conical tank T is 5 meters high and the radius of its base is 4 meters long. The base of tank rests on the ground. If the tank is filled with a liquid of density $\rho \text{ kg/}m^3$ (g is the acceleration of gravity), the work necessary to empty it by pumping the liquid through its top is

A.
$$50\rho\pi g$$

B.
$$75\rho\pi g$$

E. $120\rho\pi g$

9. The integral

$$\int_{1}^{2} x \ln x dx \text{ is equal to}$$

$$\int_{1}^{2} x \ln x dx \text{ is equal to}$$

$$\int_{1}^{2} x \ln x dx \text{ is equal to}$$

$$\int_{1}^{2} x \ln x dx \text{ is equal to}$$

$$\int_{1}^{2} x \ln x dx \text{ is equal to}$$

$$\int_{1}^{2} x \ln x dx = \int_{1}^{2} \ln x + \int_{1}^{2} \frac{dx}{dx}$$

$$\int_{1}^{2} 2 \ln 2 - 3/4$$

$$\int_{1}^{2} \ln 2 - 2$$

$$\int_{1}^{2} x \ln x dx = \int_{1}^{2} \ln x + \int_{1}^{2} \frac{dx}{dx}$$

$$\int_{1}^{2} x \ln x dx = \int_{1}^{2} \ln x + \int_{1}^{2} \frac{dx}{dx}$$

$$\int_{1}^{2} x \ln x dx = \int_{1}^{2} \ln x + \int_{1}^{2} \frac{dx}{dx}$$

$$\int_{1}^{2} x \ln x dx = \int_{1}^{2} \ln x + \int_{1}^{2} \frac{dx}{dx}$$

$$\int_{1}^{2} x \ln x dx = \int_{1}^{2} \ln x + \int_{1}^{2} \frac{dx}{dx}$$

$$\int_{1}^{2} x \ln x dx = \int_{1}^{2} \ln x + \int_{1}^{2} \frac{dx}{dx}$$

$$\int_{1}^{2} x \ln x dx = \int_{1}^{2} \ln x + \int_{1}^{2} \frac{dx}{dx}$$

$$\int_{1}^{2} x \ln x dx = \int_{1}^{2} \ln x + \int_{1}^{2} \frac{dx}{dx}$$

$$\int_{1}^{2} x \ln x dx = \int_{1}^{2} \ln x + \int_{1}^{2} \frac{dx}{dx}$$

$$\int_{1}^{2} x \ln x dx = \int_{1}^{2} \ln x + \int_{1}^{2} \frac{dx}{dx}$$

$$\int_{1}^{2} x \ln x dx = \int_{1}^{2} \ln x + \int_{1}^{2} \frac{dx}{dx}$$

$$\int_{1}^{2} x \ln x dx = \int_{1}^{2} \ln x + \int_{1}^{2} \frac{dx}{dx}$$

$$\int_{1}^{2} x \ln x dx = \int_{1}^{2} \ln x + \int_{1}^{2} \frac{dx}{dx}$$

$$\int_{1}^{2} x \ln x dx = \int_{1}^{2} \ln x + \int_{1}^{2} \frac{dx}{dx}$$

$$\int_{1}^{2} x \ln x dx = \int_{1}^{2} \ln x + \int_{1}^{2} \frac{dx}{dx}$$

$$\int_{1}^{2} x \ln x dx = \int_{1}^{2} \ln x + \int_{1}^{2} \frac{dx}{dx}$$

$$\int_{1}^{2} x \ln x dx = \int_{1}^{2} \ln x + \int_{1}^{2} \frac{dx}{dx}$$

$$\int_{1}^{2} x \ln x dx = \int_{1}^{2} \ln x + \int_{1}^{2} \frac{dx}{dx}$$

$$\int_{1}^{2} x \ln x dx = \int_{1}^{2} \ln x + \int_{1}^{2} \frac{dx}{dx}$$

$$\int_{1}^{2} x \ln x dx = \int_{1}^{2} \ln x + \int_{1}^{2} \frac{dx}{dx}$$

$$\int_{1}^{2} x \ln x dx = \int_{1}^{2} \ln x + \int_{1}^{2} \frac{dx}{dx}$$

$$\int_{1}^{2} x \ln x dx = \int_{1}^{2} \ln x + \int_{1}^{2} \frac{dx}{dx}$$

$$\int_{1}^{2} x \ln x dx = \int_{1}^{2} \ln x + \int_{1}^{2} \frac{dx}{dx}$$

$$\int_{1}^{2} x \ln x dx = \int_{1}^{2} \ln x + \int_{1}^{2} \frac{dx}{dx}$$

$$\int_{1}^{2} x \ln x dx + \int_{1}^{2} \frac{dx}{dx} + \int_{1}^{2} \frac$$

10. A force of 4 pounds stretches a spring with natural length of 12 inches to 18 inches. Find the total work by stretching the spring from a length of 18 inches to 24 inches:

A. 5 ft-lb

B. 3 ft-lb

C. 8 ft-lb

D. 6 ft-lb

E.
$$\frac{3}{2}$$
 ft-lb

W = $\frac{3}{2}$ ft-lb

W = $\frac{3}{2}$ ft-lb

 $\frac{3}{2}$ ft-lb

11. Compute the value of the following definite integral

$$\int_{0}^{\frac{1}{\sqrt{2}}} x^{2} \sqrt{1-x^{2}} dx \qquad x = \text{Sm } Q$$

$$dx = \text{Con } Q dQ$$

$$\frac{dx}{dx} = \text{Con }$$

12. The integral $\int_0^{\pi/4} \tan^3 x \sec^2 x \, dx$ is equal to

Set u = toux

du = Sec2xdx

MA162 — EXAM I — FALL 2016 — SEPTEMBER 22, 2016 TEST NUMBER 02

INSTRUCTIONS:

- 1. Do not open the exam booklet until you are instructed to do so.
- 2. Before you open the booklet fill in the information below and use a # 2 pencil to fill in the required information on the scantron.
- 3. MARK YOUR TEST NUMBER ON YOUR SCANTRON
- 4. Once you are allowed to open the exam, make sure you have a complete test. There are 7 different test pages (including this cover page).
- 5. Do any necessary work for each problem on the space provided or on the back of the pages of this test booklet. Circle your answers on this test booklet.
- 6. Each problem is worth 100/12 points. The maximum possible score is 100 points. No partial credit.
- 7. Do not leave the exam room during the first 20 minutes of the exam.
- 8. If you do not finish your exam in the first 50 minutes, you must wait until the end of the exam period to leave the room.
- 9. After you have finished the exam, hand in your scantron and your test booklet to your recitation instructor.

DON'T BE A CHEATER:

- 1. Do not give, seek or obtain any kind of help from anyone to answer questions on this exam. If you have questions, consult only your instructor.
- 2. Do not look at the exam or scantron of another student.
- 3. Do not allow other students to look at your exam or your scantron.
- 4. You may not compare answers with anyone else or consult another student until after you have finished your exam, handed it in to your instructor and left the room.
- 5. Do not consult notes or books.
- 6. Do not handle phones or cameras, calculators or any electronic device until after you have finished your exam, handed it in to your instructor and left the room.
- 7. After time is called, the students have to put down all writing instruments and remain in their seats, while the TAs collect the scantrons and the exams.
- 8. Anyone who violates these instructions will have committed an act of academic dishonesty. Penalties for academic dishonesty include an F in the course. All cases of academic dishonesty will be reported to the Office of the Dean of Students.

I have read and understand the above statements regarding academic dishonesty:

STUDENT NAME:	SOLUTIONS.	
STUDENT SIGNATURE:		 <u> </u>
STUDENT ID NUMBER:		
SECTION NUMBER AND	RECITATION INSTRUCTOR:	 <u>-</u> -

1. Find the center and the radius of the sphere
$$3x^2 + 3y^2 + 3z^2 - 6x - 5y + 2z = 0$$

A. Center
$$(-1, -\frac{5}{6}, \frac{1}{3})$$
 and radius $\frac{\sqrt{75}}{6}$

B. Center
$$(1, \frac{5}{6}, -\frac{1}{3})$$
 and radius $\frac{\sqrt{75}}{6}$

C. Center
$$(1, \frac{5}{6}, \frac{1}{3})$$
 and radius $\frac{\sqrt{65}}{6}$

D. Center
$$(-1, \frac{5}{6}, -\frac{1}{3})$$
 and radius $\frac{\sqrt{65}}{8}$

$$\int$$
 E. Center $(1, \frac{5}{6}, -\frac{1}{3})$ and radius $\frac{\sqrt{65}}{6}$

But
$$2^{2}-2x = (2-1)^{2}-1$$

$$y^{2}-5/3y = (y-5/6)^{2}-\frac{25}{36}$$

$$3^{2}+2/33 = (3+1/3)^{2}-1/9$$

So we obtain:

$$(x-1)^2 + (y-5/6)^2 + (3+1/3)^2 = 1 + \frac{25}{36} + \frac{1}{9} = \frac{65}{36}$$

Ceulu: $(1, \frac{5}{6}, -\frac{1}{3})$ Radium: $\sqrt{65}$

2. The measure of the angle (in radians) between the vectors

$$\vec{u} = 2\vec{i} + \vec{j} + \vec{k} \text{ and } \vec{v} = -\sqrt{6} \vec{i} - \vec{j} + \vec{k} \text{ is equal to}$$

$$\vec{V} \circ \vec{V}' = |\vec{W}'| \cdot |\vec{V}'| \cdot C_{11} \cdot Q \cdot C_{12} \cdot Q \cdot C_{13} \cdot Q \cdot$$

The area of the triangle with vertices P(1,0,2), Q(2,-1,1) and R(0,-1,-1) is equal to

$$= i(2) - 5'(-4) + k'(-2)$$

4. The area of the region bounded by y = x(3-x) and $y = x^2$ is equal to

A.
$$\frac{2}{3}$$

B.
$$\frac{5}{3}$$

C.
$$\frac{1}{6}$$

$$E. \frac{1}{3}$$

$$y = x^{2}$$

$$y = 3x - x^{2}$$

$$y = 3x - x^{2}$$

$$A = \int_{0}^{3/2} (-x^{2} + 3x) dx$$

$$= \int_{-2}^{3/2} (-x^{2} + 3x)^{3} dx$$

$$= -2 x^{3} + \frac{3x^{2}}{2} = -\frac{2}{3} \cdot (\frac{3}{2})^{3} + (\frac{3}{2})^{3}$$

$$= (\frac{3}{2})^{3} - (\frac{3}{2})^{2} = \frac{27}{8} - \frac{9}{4} = \frac{27 - 18}{8}$$

$$= \frac{3}{2} \cdot (\frac{3}{2})^{3} - (\frac{3}{2})^{2} = \frac{9}{8} - \frac{9}{4} = \frac{9}{8}$$

5. Find the volume of the solid whose base is the region bounded by $y = 4x^2$ and y = 4, and whose cross-sections are squares that are perpendicular to the y-axis.

Area of ten cross sechan y.
$$V = \int_0^4 y \, dy = 8$$

6. The volume of the solid obtained by rotating the region bounded by $y = x^2 + 1$, x = 0 and y = 3 about the y-axis is equal to

$$A = 2\pi$$

B.
$$3\pi$$

C.
$$4\pi$$

D.
$$6\pi$$

E.
$$8\pi$$

$$V = \int_{1}^{3} \pi (y^{-1}) dy = \pi \int_{0}^{2} y dy = 2\pi$$

7. If one uses the method of cylindrical shells to find the volume of the region bounded by the curves y = 2x and $y = x^2$ rotated about the x-axis, one arrives at the following integral

$$(A) 2\pi \int_0^4 (y^{\frac{3}{2}} - \frac{1}{2}y^2) \ dy$$

B.
$$2\pi \int_0^4 (y^{\frac{5}{2}} - \frac{1}{2}y^{\frac{3}{2}}) dy$$

C.
$$2\pi \int_0^4 (y^{\frac{3}{2}} - \frac{1}{3}y^3) dy$$

D.
$$2\pi \int_0^4 (y^{\frac{1}{2}} - \frac{1}{2}y) \ dy$$

E.
$$2\pi \int_0^4 y^2 (y^{\frac{1}{2}} - \frac{1}{2}y) \ dy$$

$$V = 2 \pi \int_{0}^{4} y (\sqrt{y} - \frac{4}{2} h) dy = 2 \pi \int_{0}^{4} (y^{3/2} - \frac{1}{2} y^{2}) dy$$

8. A conical tank T is 3 meters high and the radius of its base is 2 meters long. The base of tank rests on the ground. If the tank is filled with a liquid of density $\rho \, \text{kg/}m^3$ and g denotes the acceleration of gravity, the work necessary to empty it by pumping the liquid through its top is

A.
$$7\rho\pi g$$

B.
$$9\rho\pi g$$

C.
$$15\rho\pi g$$

D.
$$12\rho\pi g$$

E.
$$8\rho\pi g$$

$$= \pi pg \times (r(x))^2 dx$$

$$W_{\text{ONK}} = \pi fg + \int_{0}^{3} x^{3} dx$$

$$n(x) = \frac{22}{3}$$

9. The integral
$$\int_1^3 x \ln x dx$$
 is equal to

$$\int \frac{\ln x}{n} \frac{z dx}{dv} = \frac{\chi^2 \ln x - \int \chi^2 dx}{1 + \int \chi^2 dx}$$

$$u = \ln x, \quad du = \frac{1}{2} dx = \frac{\chi^2 \ln x - \chi^2}{2}$$

A.
$$\frac{9}{2} \ln 3 - \frac{9}{4}$$

B. $2 \ln 3 - 3/2$

C.
$$\frac{9}{2} \ln 3 - 3$$

$$dv = \chi d\chi$$
, $V = \chi^2$

$$\boxed{D.\frac{2}{9}\ln 3 - 2}$$

E.
$$9 \ln 3 - 2$$

$$\int_{1}^{3} x \ln x \, dx = \left(\frac{9}{2} \ln 3 - \frac{9}{4} \right) - \left(-\frac{1}{4} \right)$$

$$- \frac{9}{2} \ln 3 - 2.$$

10. A force of 10 pounds stretches a spring with natural length of 6 inches to 12 inches. Find the total work by stretching the spring from a length of 12 inches to 18 inches:

A.
$$\frac{5}{2}$$
 ft-lb

$$E. \frac{15}{2}$$
 ft-lb

$$W = 20 \int_{0.5}^{1} x dx = 10 x^{2} \Big|_{0.5}^{1}$$

$$= 10 \left(1 - (0.5)^{2} \right) = 10 \cdot \frac{3}{4} = \frac{15}{2} \text{ ff-1},$$

11. Compute the value of the following definite integral

$$\int_{0}^{1} x^{2} \sqrt{1-x^{2}} dx \qquad X = \sin x, \, dx = \cos x \, dx$$

$$\frac{\pi}{12}$$

$$\frac{\pi}{4}$$

$$\frac{\pi}{16}$$

$$\frac{\pi}{16}$$

$$\frac{\pi}{16}$$

$$\frac{\pi}{8}$$

$$\frac{\pi}{2}$$

$$\frac{\pi}{4}$$

$$\frac{\pi}{16}$$

$$\frac{\pi}{8}$$

$$\frac{\pi}{4}$$

$$\frac{\pi}{16}$$

12. The integral $\int_0^{\pi/4} \tan^5 x \sec^2 x \, dx$ is equal to

= 5 u5 du = 1/6.

$$A \frac{1}{6}$$

B.
$$\frac{1}{4}$$

C.
$$\frac{9}{4}$$

D.
$$\frac{2}{5}$$

E.
$$\frac{1}{3}$$