MA162 — EXAM III — FALL 2016 — NOVEMBER 10, 2016 TEST NUMBER 01

INSTRUCTIONS:

- 1. Do not open the exam booklet until you are instructed to do so.
- 2. Before you open the booklet fill in the information below and use a # 2 pencil to fill in the required information on the scantron.
- 3. MARK YOUR TEST NUMBER ON YOUR SCANTRON
- 4. Once you are allowed to open the exam, make sure you have a complete test. There are 7 different test pages (including this cover page).
- 5. Do any necessary work for each problem on the space provided or on the back of the pages of this test booklet. Circle your answers on this test booklet.
- 6. Each problem is worth 8 points. Everyone gets 4 points. The maximum possible score is 100 points. No partial credit.
- 7. Do not leave the exam room during the first 20 minutes of the exam.
- 8. If you do not finish your exam in the first 50 minutes, you must wait until the end of the exam period to leave the room.
- 9. After you have finished the exam, hand in your scantron and your test booklet to your recitation instructor.

DON'T BE A CHEATER:

- 1. Do not give, seek or obtain any kind of help from anyone to answer questions on this exam. If you have questions, consult only your instructor.
- 2. Do not look at the exam or scantron of another student.
- 3. Do not allow other students to look at your exam or your scantron.
 - 4. You may not compare answers with anyone else or consult another student until after you have finished your exam, handed it in to your instructor and left the room.
 - 5. Do not consult notes or books.
 - 6. Do not handle phones or cameras, calculators or any electronic device until after you have finished your exam, handed it in to your instructor and left the room.
 - 7. After time is called, the students have to put down all writing instruments and remain in their seats, while the TAs collect the scantrons and the exams.
 - 8. Anyone who violates these instructions will have committed an act of academic dishonesty. Penalties for academic dishonesty include an F in the course. All cases of academic dishonesty will be reported to the Office of the Dean of Students.

I have read and understand the above statements regarding academic dishonesty:

STUDENT NAME:	SOLUTIONS	
STUDENT SIGNATURE:		
STUDENT ID NUMBER:		
SECTION NUMBER AND RE	ECITATION INSTRUCTOR:	

1. Find all values of p such that the series
$$\sum_{k=1}^{\infty} \sqrt{\frac{k^3 + 3k}{k^p + 2}}$$
 converges.

A.
$$p > 1$$

B.
$$p > 4$$
C. $p > 5$

$$\sqrt{\frac{k^3+3k}{k^2+2}} = \sqrt{\frac{1+3/k^2}{1+2/k^2}} \cdot \frac{k^{3/2}}{k^{2/2}} =$$

D.
$$p > 2$$

E.
$$p > 7$$

$$\lim_{\frac{h^{3}+3h}{k^{2}+2}} \sqrt{\frac{h^{3}+3h}{k^{2}+2}} = 1$$

Since
$$\frac{1}{p^{\frac{2}{3}}}$$
 converses $\frac{1}{p^{\frac{2}{3}}}$ only if $\frac{1}{p^{\frac{2}{3}}}$ only if $\frac{1}{p^{\frac{2}{3}}}$ only converses

2. Which of the statements below is true for the series
$$\sum_{m=1}^{\infty} \frac{3^{-m}}{\sin(m) + 2}$$
?

A. It diverges by comparison with
$$\sum_{m=1}^{\infty} \frac{1}{\sin(m) + 2}$$
.

B. It diverges by comparison with
$$\sum_{m=1}^{\infty} 3^{-m}$$
.

C. It converges by comparison test
$$\sum_{m=1}^{m-1} \frac{1}{\sin(m) + 2}$$

E. It converges by comparison with
$$\sum_{m=1}^{\infty} 3^{-m}$$
.

3. Which of the following series converge?

$$I. \sum_{k=1}^{\infty} \frac{1}{2k+1}; \quad II. \sum_{k=1}^{\infty} (-1)^{k-1} \frac{1}{\sqrt{k}+1}; \quad III. \sum_{k=1}^{\infty} \frac{1}{k^2+1}$$

I. Diverses by companion will I !

- A. All three
- B. Only I and II
- C. Only III
- D. None
- E. Only II and III

$$\frac{1}{2k+1} > \frac{1}{4h} : \sum_{2k+1} \frac{1}{2k+1} > \sum_{4k} \frac{1}{4k}$$

- II. Converses by alternating Seus
- III) kit1 >, ki , \frac{1}{k^2t1} \leq k^2

 [Lange of the companion with the land of the
 - Σ 1/2.
- 4. Consider $S = \sum_{m=1}^{\infty} (-1)^{m-1} \frac{1}{m^4}$ and its partial sum $S_n = \sum_{m=1}^{n} (-1)^{m-1} \frac{1}{m^4}$. According to the alternating series estimation theorem, what is the smallest n such that $|S S_n| \le 16 \times 10^{-8}$?

A.
$$n = 101$$

B.
$$n = 99$$

C.
$$n = 51$$

D.
$$n = 49$$

$$\overline{{
m E.} \ n = 499}$$

$$|S-S_n| \le \frac{1}{(h+1)^4} \le |6 \times 10^{-8}$$

$$\frac{1}{(h+1)^4} \leq \frac{2^4}{108}$$
; $\frac{1}{h+1} \leq \frac{2}{10^2}$

$$n+1 > \frac{100}{2} = 50, \left[n > 49 \right]$$

5. Which of the statements is true about the following series?

I.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \cos(n)$$
; II. $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\ln(n+1)}$; III. $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sqrt{n+1}}{n}$.

- A. All three are convergent
- B. Only II is convergent
- C. Only II and III are convergent
- D. Only III is convergent
- E. Only I and II are convergent

I) Alternating Serves; Converge

III) Also alternahuf; convax

6. Which of the following statements is false?

A.
$$\sum_{n=1}^{\infty} \frac{1}{n^p + n}$$
 is convergent for all $p > 1$. Then, In legal test

B. $\sum_{n=1}^{\infty} r^n$ diverges for all r such that $|r| \ge 1$. Thue; genue has sens.

B.
$$\sum_{n=1}^{\infty} r^n$$
 diverges for all r such that $|r| \ge 1$. Thue j geometric series

$$\int_{-\infty}^{\infty} C \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} da_n = \int_{-\infty}^{\infty} a_n \text{ is convergent, then } \sum_{n=1}^{\infty} b_n \text{ is also convergent.} \quad \text{False } \int_{-\infty}^{\infty} da_n = \int_{-\infty}^{\infty} da_n =$$

D. If
$$0 \le a_n \le b_n$$
 and $\sum_{n=1}^{n=1} a_n$ is divergent, then $\sum_{n=1}^{\infty} b_n$ is also divergent. The first test $\sum_{n=1}^{\infty} \frac{n^2}{r^n}$ converges for all r such that $|r| > 1$.

E.
$$\sum_{n=1}^{\infty} \frac{n^2}{r^n}$$
 converges for all r such that $|r| > 1$. Thue; ratio test

Which of the following series converge?

$$S_1 = \sum_{n=1}^{\infty} \frac{3^n}{4^n + 5^n}, \quad S_2 = \sum_{n=1}^{\infty} \frac{n^2}{n^3 + 5n}, \quad S_3 = \sum_{n=2}^{\infty} \frac{\ln n}{n},$$

A.
$$S_1$$
, S_2 and S_3

B. Only
$$S_1$$
 and S_2

C. Only
$$S_2$$
 and S_3

D. Only
$$S_1$$
 and S_3

E. Only
$$S_1$$

Correct!
$$S_2: \frac{n^2}{n^3+5n} = \frac{1}{n} \frac{1}{1+5/n^2!}$$

 $\frac{3^{n}}{4^{n}+5^{n}} = \frac{3^{n}}{5^{n}} \frac{1}{1+(\frac{4}{5})^{n}} = \frac{(\frac{3}{5})}{5}$

Souce I 1/2 divuser, so does 52.

Sna $\frac{2}{5}$ $\frac{3}{5}$ converses, So Lores S,

Which of the following series converge?

$$S_1 = \sum_{n=1}^{\infty} \frac{n!}{10^n}, \quad S_2 = \sum_{n=1}^{\infty} \frac{10^n}{(n+1)^n}, \quad S_3 = \sum_{n=2}^{\infty} n^8 \ 2^{-n},$$

A.
$$S_1$$
, \tilde{S}_2 and S_3

$$S_{A}$$
: $an = \frac{n!}{10^4}$

$$S_{A}: an = \frac{n!}{10^{4n}} \frac{a_{n+1}}{a_{n}} = \frac{(h+1)!}{10^{h+1}} \times \frac{10^{h}}{n!}$$

$$= \frac{n+1}{10} \rightarrow \infty ; dvu_{sh}$$

B. Only
$$S_1$$
 and S_2

B. Only
$$S_1$$
 and S_2

C. Only
$$S_2$$
 and S_3

D. Only
$$S_1$$
 and S_3

$$a_n = \left(\frac{10}{n+1}\right)^n$$

$$S_2: \alpha_n = \left(\frac{10}{h+1}\right)^n \quad |\alpha_n|^{1/n} = \frac{10}{h+1} \rightarrow 0$$

E. Only S_1

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)^n}{2^{n+1}}$$

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)^8}{2^{n+1}} \qquad \frac{2^n}{n^8} = \frac{1}{2} \left(\frac{n+1}{n}\right)^8$$

9. Find the interval of convergence of
$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{n \, 3^n}.$$

$$\Im n = \left(\frac{\lambda - 1}{h \, 3^n}\right)^n$$

$$a_n = \left(\frac{2-1}{n}\right)^n / 2 \neq$$

A.
$$[-1, 4]$$

C.
$$[-2, 4]$$

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{|z_{-1}|^{n+1}}{(n+1) \cdot 3^{n+1}} \times \frac{n \cdot 3^n}{|z_{-1}|^n} =$$

D.
$$(-2,4]$$

$$= \frac{|x-1|}{3}$$

$$= \frac{|x-1|}{3} \quad \frac{n}{n+1} \rightarrow \frac{|x-1|}{3} < \frac{1}{3}$$

$$|x-1| < 3$$

Endpoints:
$$\chi = 4$$
: $\sum_{n=1}^{\infty} \frac{1}{n}$ diverses

 $\chi = -2$: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converses

 $\chi = -2$: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converses

10. Let $b_n > 0$ and a_n be such that

$$a_{n+1} = (-1)^{n+1} \left(\frac{n+1}{2n+7}\right) a_n \text{ for } n \ge 1 \text{ and } \lim_{n \to \infty} \frac{|a_n|}{b_n} = 2.$$

We can say that the following are true:

$$A.\sum_{n=1}^{\infty} a_n$$
 converges absolutely and $\sum_{n=1}^{\infty} b_n$ converges

- B. $\sum_{n=1}^{\infty} a_n$ converges conditionally and $\sum_{n=1}^{\infty} b_n$ converges
- C. $\sum_{n=0}^{\infty} a_n$ diverges and $\sum_{n=0}^{\infty} b_n$ converges
- D. $\sum_{n=0}^{\infty} a_n$ converges absolutely and $\sum_{n=0}^{\infty} b_n$ diverges
- E. $\sum_{n=1}^{\infty} a_n$ diverges and $\sum_{n=1}^{\infty} b_n$ diverges

$$\begin{array}{c|c} |C_{n}| & |C_{n}| = \\ |C_{n}| & |C_{n}| = \\ |C_{n}| & |C_{n}| & |C_{n}| = \\ |C_{n}| & |$$

11. The function
$$f(x) = \ln(2-x)$$
 is represented by the power series $\ln 2 - \sum_{n=1}^{\infty} a_n x^n$ where $a_n = 1$

A.
$$a_n = \frac{1}{2^n}$$
B. $a_n = (-1)^n$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

C.
$$a_n = \frac{1}{n^2} 2^n$$

$$D. a_n = \frac{1}{n \cdot 2^n}$$

$$lu(1-x) = -\sum_{n=0}^{\infty}$$

$$\frac{\chi^{n+1}}{n+1} = -\sum_{h=1}^{\infty} \frac{\chi^h}{n}.$$

$$E. \ a_n = \frac{1}{n^2}$$

1. The function
$$f(x) = \ln(2-x)$$
 is represented by the power series $\ln 2 - \sum_{n=1}^{\infty} a_n x^n$ where $a_n = \sum_{n=1}^{\infty} A$. $a_n = \frac{1}{2^n}$

B. $a_n = (-1)^n \frac{1}{n \cdot 2^n}$

C. $a_n = \frac{1}{n^2} 2^n$

D. $a_n = \frac{1}{n \cdot 2^n}$

Lu $(1-x) = -\sum_{n=0}^{\infty} \frac{x^n}{n+1} = -\sum_{n=1}^{\infty} \frac{x^n}{n}$

E. $a_n = \frac{1}{n^2}$

Lu $(2-x) = \ln 2 + \ln (1-x^n)$
 $a_n = \frac{1}{n^2}$
 $a_n = \frac{1}{n^2}$

$$an = \frac{1}{n2n}$$

12. Use that
$$\frac{2x}{(1-x^2)^2} = \frac{d}{dx}(\frac{1}{1-x^2})$$
 to conclude that $\frac{2x}{(1-x^2)^2} =$

$$\begin{array}{c|c}
 & \text{A.} \sum_{n=1}^{\infty} 2n \ x^{2n-1} \\
 & \text{B.} \sum_{n=1}^{\infty} (-1)^n (2n+1) \ x^{2n+1}
\end{array}$$

B.
$$\sum_{n=1}^{\infty} (-1)^n (2n+1) x^{2n+1}$$

C.
$$\sum_{n=1}^{n=1} (2n-1) x^{2n+1}$$

D.
$$\sum_{n=1}^{\infty} n \ x^{2n+1}$$

E.
$$\sum_{n=1}^{\infty} \frac{x^{2n-1}}{n+1}$$

$$\frac{1}{1-x^2} = \sum_{n=0}^{\infty} x^{2n}.$$

$$\frac{1}{1-x^2} = \sum_{n=0}^{\infty} x^{2n}.$$

$$\frac{d}{dx} \frac{1}{1-x^2} = \sum_{n=1}^{\infty} 2n x^{2n-1}$$

$$\sum_{n=1}^{\infty} 2n x^{2n-1}$$

MA162 — EXAM III — FALL 2016 — NOVEMBER 10, 2016 TEST NUMBER 02

INSTRUCTIONS:

- 1. Do not open the exam booklet until you are instructed to do so.
- 2. Before you open the booklet fill in the information below and use a # 2 pencil to fill in the required information on the scantron.
- 3. MARK YOUR TEST NUMBER ON YOUR SCANTRON
- 4. Once you are allowed to open the exam, make sure you have a complete test. There are 7 different test pages (including this cover page).
- 5. Do any necessary work for each problem on the space provided or on the back of the pages of this test booklet. Circle your answers on this test booklet.
- 6. Each problem is worth 8 points. Everyone gets 4 points. The maximum possible score is 100 points. No partial credit.
- 7. Do not leave the exam room during the first 20 minutes of the exam.
- 8. If you do not finish your exam in the first 50 minutes, you must wait until the end of the exam period to leave the room.
- 9. After you have finished the exam, hand in your scantron and your test booklet to your recitation instructor.

DON'T BE A CHEATER:

- 1. Do not give, seek or obtain any kind of help from anyone to answer questions on this exam. If you have questions, consult only your instructor.
- 2. Do not look at the exam or scantron of another student.
- 3. Do not allow other students to look at your exam or your scantron.
- 4. You may not compare answers with anyone else or consult another student until after you have finished your exam, handed it in to your instructor and left the room.
- 5. Do not consult notes or books.
- 6. Do not handle phones or cameras, calculators or any electronic device until after you have finished your exam, handed it in to your instructor and left the room.
- 7. After time is called, the students have to put down all writing instruments and remain in their seats, while the TAs collect the scantrons and the exams.
- 8. Anyone who violates these instructions will have committed an act of academic dishonesty. Penalties for academic dishonesty include an F in the course. All cases of academic dishonesty will be reported to the Office of the Dean of Students.

I have read and understand the above statements regarding academic dishonesty:

STUDENT NAME:	SOLUTIONS	
•		
STUDENT SIGNATURE:		
STUDENT ID NUMBER:		
SECTION NUMBER AND RI	ECITATION INSTRUCTOR:	

- 1. Find all values of p such that the series $\sum_{k=1}^{\infty} \sqrt{\frac{k^4 + 3k}{k^p + 2}}$ converges.
 - A. p > 1
 - B. p > 6
 - C. p > 5
 - D. p > 4
 - E. p > 7

- 2. Which of the statements below is true for the series $\sum_{k=1}^{\infty} \frac{2^{-m}}{\cos(m) + 2}$?
 - A. It diverges by comparison test with $\sum_{m=1}^{\infty} \frac{1}{\cos(m) + 1}$.
 - B. It diverges by comparison test with $\sum_{m=1}^{\infty} 2^{-m}$.
 - C. It converges by comparison test with $\sum_{m=1}^{\infty} \frac{1}{\cos(m) + 1}$.
- D. It converges by comparison test with $\sum_{m=1}^{m=1} 2^{-m}$.
 - E. The comparison test is not applicable.

3. Which of the following series converge?

$$I. \ \, \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{3k-1}; \quad II. \ \, \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}+4}; \quad III. \ \, \sum_{k=2}^{\infty} \frac{1}{k^2-2k}$$

- A. All three
- B. Only I
- C. Only I and III
- D. Only III
- E. None

4. Consider $S = \sum_{m=1}^{\infty} (-1)^{m-1} \frac{1}{m^3}$ and its partial sum $S_n = \sum_{m=1}^n (-1)^{m-1} \frac{1}{m^3}$. According to the alternating series estimation theorem, what is the smallest n such that $|S - S_n| \le 8 \times 10^{-9}$?

A.
$$n = 101$$

B.
$$n = 99$$

C.
$$n = 51$$

D.
$$n = 49$$

E.
$$n = 499$$

5. Which of the statements are true about the following series?

I.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \sin(n)$$
; II. $\sum_{n=1}^{\infty} \frac{\ln(n+1)}{n}$; III. $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sqrt{n+1}}{n}$.

- A. All three are convergent
- B. Only III is convergent
- C. II and III are convergent
- D. All three are divergent
- E. I and III are divergent

6. Which of the following statements is false?

$$\bigwedge$$
 A. If $0 \le a_n \le b_n$ and $\sum_{n=1}^{\infty} a_n$ is convergent, then $\sum_{n=1}^{\infty} b_n$ is also convergent.

- B. $\sum_{n=1}^{\infty} \frac{1}{n^p + n}$ is convergent for all p > 1.
- C. $\sum_{n=1}^{\infty} r^n$ diverges for all r such that $|r| \ge 1$.
- D. If $0 \le a_n \le b_n$ and $\sum_{n=1}^{\infty} a_n$ is divergent, then $\sum_{n=1}^{\infty} b_n$ is also divergent.
- E. $\sum_{n=1}^{\infty} \frac{n^2}{r^n}$ converges for all r such that |r| > 1.

7. Which of the following series converge?

$$S_1 = \sum_{n=1}^{\infty} \frac{5^n}{4^n + 6^n}, \quad S_2 = \sum_{n=1}^{\infty} \frac{n^2}{n^4 + 5n}, \quad S_3 = \sum_{n=2}^{\infty} \frac{1 + n}{n^2 (\ln n)^2 + 4},$$

- (A) S_1 , S_2 and S_3
 - B. Only S_1 and S_2
 - C. Only S_2 and S_3
 - D. Only S_1 and S_3
 - E. Only S_1

8. Which of the following series converge?

$$S_1 = \sum_{n=1}^{\infty} \frac{n!}{10^n}, \quad S_2 = \sum_{n=1}^{\infty} \left(2 + \frac{1}{n}\right)^n, \quad S_3 = \sum_{n=2}^{\infty} n^4 \, 3^{-n},$$

- A. S_1 , S_2 and S_3
- B. Only S_1 and S_2
- C. Only S_2 and S_3
- D. Only S_1 and S_3
- $\overbrace{\mathrm{E.}}$ only S_3

- **9.** Find the interval of convergence of $\sum_{n=1}^{\infty} \frac{(x-2)^n}{\sqrt{n} \ 2^n}.$
 - A. [1, 5]
 - B. (1,4) C. [0,4)
 - D. (0,4]
 - E. [0, 4]

10. Let $b_n > 0$ and a_n be such that

$$a_{n+1} = (-1)^{n+1} \left(\frac{2n+1}{n+7}\right) a_n \text{ for } n \ge 1 \text{ and } \lim_{n \to \infty} \frac{|a_n|}{b_n} = 2.$$

We can say that the following are true:

- A. $\sum_{n=1}^{\infty} a_n$ converges absolutely and $\sum_{n=1}^{\infty} b_n$ converges
- B. $\sum_{n=1}^{\infty} a_n$ converges conditionally and $\sum_{n=1}^{\infty} b_n$ converges
- C. $\sum_{n=1}^{\infty} a_n$ diverges and $\sum_{n=1}^{\infty} b_n$ converges
- D. $\sum_{n=1}^{\infty} a_n$ converges absolutely and $\sum_{n=1}^{\infty} b_n$ diverges
- $\underbrace{\sum_{n=1}^{n=1} \sum_{n=1}^{\infty} a_n \text{ diverges and } \sum_{n=1}^{\infty} b_n \text{ diverges}}_{n=1}$

- The function $f(x) = \ln(3-x)$ is represented by the power series $\ln 3 \sum_{n=1}^{\infty} a_n x^n$ where $a_n = a_n x^n$
 - - D. $a_n = (-1)^n \frac{1}{n \cdot 3^n}$
 - E. $a_n = \frac{1}{n^2}$

- 12. Use that $\frac{3x^2}{(1-x^3)^2} = \frac{d}{dx}(\frac{1}{1-x^3})$ to conclude that $\frac{3x^2}{(1-x^3)^2} =$
 - A. $\sum_{n=1}^{\infty} (3n-1) x^{3n-1}$
 - B. $\sum_{n=1}^{\infty} (-1)^n (3n+1) x^{3n+1}$

 - C. $\sum_{n=1}^{\infty} (3n+1) x^{3n+1}$ D. $\sum_{n=1}^{\infty} 3n x^{3n-1}$ E. $\sum_{n=1}^{\infty} \frac{x^{3n-1}}{3n+1}$