MA162 — EXAM III — SPRING 2017 — APRIL 11, 2017 TEST NUMBER 01

INSTRUCTIONS:

- 1. Do not open the exam booklet until you are instructed to do so.
- 2. Before you open the booklet fill in the information below and use a # 2 pencil to fill in the required information on the scantron.
- 3. MARK YOUR TEST NUMBER ON YOUR SCANTRON
- 4. Once you are allowed to open the exam, make sure you have a complete test. There are 8 different test pages (including this cover page).
- 5. Do any necessary work for each problem on the space provided or on the back of the pages of this test booklet. Circle your answers on this test booklet.
- 6. There are 14 problems and the number of points each problem is worth is indicated next to the problem number. The maximum possible score is 100 points. No partial credit.
- 7. Do not leave the exam room during the first 20 minutes of the exam.
- 8. If you do not finish your exam in the first 50 minutes, you must wait until the end of the exam period to leave the room.
- 9. After you have finished the exam, hand in your scantron and your test booklet to your recitation instructor.

DON'T BE A CHEATER:

- 1. Do not give, seek or obtain any kind of help from anyone to answer questions on this exam. If you have doubts, consult only your instructor.
- 2. Do not look at the exam or scantron of another student.
- 3. Do not allow other students to look at your exam or your scantron.
- 4. You may not compare answers with anyone else or consult another student until after you have finished your exam, given it to your instructor and left the room.
- 5. Do not consult notes or books.
- 6. **Do not handle** phones or cameras, calculators or any electronic device until after you have finished your exam, given it to your instructor and left the room.
- 7. After time is called, the students have to put down all writing instruments and remain in their seats, while the TAs collect the scantrons and the exams.
- 8. Anyone who violates these instructions will have committed an act of academic dishonesty. Penalties for academic dishonesty include an F in the course. All cases of academic dishonesty will be reported to the Office of the Dean of Students.

I have read and understand the above statements regarding academic dishonesty:

STUDENT NAME:	SOLUTIONS
STUDENT SIGNATURE: _	
STUDENT ID NUMBER: _	
SECTION NUMBER AND	RECITATION INSTRUCTOR:

FORMULA SHEET

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}, \quad \text{for all } x.$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}, \quad \text{for all } x.$$

$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n, \text{ for all } x.$$

$$(1+x)^k = 1 + kx + \frac{k(k-1)}{2!} x^2 + \frac{k(k-1)(k-2)}{3!} x^3 + \dots + \frac{k(k-1)(k-2)\dots(k-n+1)}{n!} x^n \dots$$

If
$$f(x) = \sum_{n=0}^{\infty} C_n(x-a)^n$$
, for $|x-a| < R$, then $\int_a^x f(t) dt = \sum_{n=0}^{\infty} \frac{C_n}{n+1} (x-a)^{n+1}$ for $|x-a| < R$.

If
$$f(x) = \sum_{n=0}^{\infty} C_n(x-a)^n$$
, for $|x-a| < R$, then $f'(x) dt = \sum_{n=1}^{\infty} nC_n(x-a)^{n-1}$ for $|x-a| < R$.

1. (8 points) Consider the two series

I)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2 + 7}$$
 and II) $\sum_{n=1}^{\infty} (-1)^n \frac{n}{5^n}$.

$$\frac{n}{n^{2}+7} \sim \frac{1}{n} \quad \text{for } n \quad \text{lause.}$$

$$\frac{n}{n^{2}+7} \quad \frac{n}{n} \quad \text{diverse.}$$

$$\frac{1}{n} = \frac{n}{n^{2}+7} \quad \text{is alternahing}$$

$$\frac{1}{n} \quad \text{olutely} \quad \text{h=1} \quad \text{so it. Converse.}$$

Which of the following is true?

- A. I and II converge conditionally
- B. I converges conditionally and II converges absolutely \
- C. I converges absolutely and II converges conditionally
- D. I and II converge absolutely

In (II)
$$a_n = (-1)^n \frac{n}{5^n}$$

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{h+1}{5^{n+1}} \cdot \frac{5^n}{n} = \frac{h+1}{n} \cdot \frac{1}{5} \quad \lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| = \frac{1}{5} < 1$$
The converges absolubly

(I) Converses conditionally

- 2. (8 points) The series $\sum_{n=1}^{\infty} \frac{1}{n(\ln(2n))^2}$
 - A. Converges by the ratio test
 - B. Diverges by the ratio test
 - C. Diverges by the integral test
 - D. Converges by the integral test
 - E. Converges by the root test.

ten p=2. Hu root test are Maconclunk The rate test and

3. (8 points) Which of the following series are convergent? $\frac{3n^2}{n^3+1}$ ~ $\frac{3}{n}$ for n large. Services deverses

I.
$$\sum_{n=1}^{\infty} \frac{3n^2}{n^3 + 1}$$

II.
$$\sum_{n=1}^{\infty} \frac{3n^2}{(n^3+1)^2}$$

III.
$$\sum_{n=1}^{\infty} \frac{3n^2}{(n^3+1)^{4/3}}$$

- B. I and II only
- C. II and III only
- D. None of them
- E. All of them

4. (8 points) For what values of a is the series $\sum_{n=1}^{\infty} \left(\frac{n}{an+1}\right)^n$ absolutely convergent?

A.
$$|a| < 1$$

B.
$$|a| < 1$$

C.
$$|a| \ge 1$$

D.
$$|a| > 1$$

E.
$$|a| = 1$$

$$a_n = \left(\frac{n}{a_{n+1}}\right)^n \cdot \left|a_n\right|^{1/n} = \frac{n}{|a_{n+1}|}$$

$$a_n = \left(\frac{n}{a_{n+1}}\right)^n$$

$$\lim_{N\to\infty} \frac{|a_n|^{1/n}}{|a|} = \frac{1}{|a|} < 1.$$

 $\frac{3n^2}{(n^3+1)^2} \sim \frac{3n^2}{n^6} = \frac{3}{n^4}$ for n lande. Converge

 $\frac{3n^2}{(n^3+1)^{\frac{7}{4}/3}} \sim \frac{3n^2}{n \cdot 4} = \frac{3}{n^2} - \frac{3}{n^2} - \frac{3}{n^2}$

$$a_n = \left(\frac{n}{a_{n+1}}\right)^n =$$

The case
$$a=1$$
 $a_n = \left(\frac{n}{a_{n+1}}\right)^n = \left(\frac{1}{1+1/n}\right)^{n-1} \in \mathbb{R}$

$$\left(\frac{n}{1-n}\right)^n =$$

$$(-1)^{n} \frac{1}{(1-\frac{1}{4})^{n}}$$

a=-1. $a_n=\left(\frac{n}{1-n}\right)^n=\left(-1\right)^n\frac{1}{\left(1-\frac{1}{n}\right)^n}$ lumpan dass not exist

(8 points) Compute the Taylor series of $f(x) = \ln x$ centered at 4 and use it to find $f^{(9)}(4)$.

A.
$$f^{(9)}(4) = \frac{9!}{4^9}$$

B.
$$f^{(9)}(4) = -\frac{9!}{4^9}$$

C.
$$f^{(9)}(4) = \frac{8!}{4^9}$$

D.
$$f^{(9)}(4) = -\frac{8!}{4^9}$$

$$\frac{1}{x} = \frac{1}{4+x-4} = \frac{1}{4}$$

$$\frac{1}{1+\frac{x-4}{4}} = \sum_{h=0}^{\infty} (-1)^{h} \left(\frac{x-4}{4^{h}}\right)^{h}, \quad \frac{1}{4^{h}} \frac{x-4}{4^{h}} \left[\frac{4}{4^{h}}\right]^{h}$$

E.
$$f^{(9)}(4) = \frac{10!}{4^9}$$
 $\frac{1}{\chi} = \frac{2}{\lambda = 0} (-1)^n \frac{(\chi - 4)^n}{4^{n+1}}$

E.
$$f^{(9)}(4) = \frac{10!}{4^9}$$

$$\frac{1}{x} = \sum_{h=0}^{\infty} \frac{(-1)^h}{4^{h+1}} \cdot \frac{(x-4)^h}{4^{h+1}} \cdot \frac{(x-4)^h}{4^$$

6. (8 points) Using a geometric series, the first two nonzero terms of a power series for
$$\frac{x}{9-x^2}$$
 are

A.
$$\frac{x}{9} + \frac{x^3}{9}$$
 Use the $\frac{1}{1-\alpha} =$

B.
$$\frac{x}{9} - \frac{x^2}{27}$$

C.
$$\frac{x}{9} + \frac{x^2}{27}$$

D.
$$\frac{x}{9} - \frac{x^3}{81}$$

E.
$$\frac{x}{9} + \frac{x^3}{81}$$

Use the
$$\frac{1}{1-n} = \frac{1}{3} = \frac{1}$$

$$= \sum_{h=0}^{\infty} \frac{x^{2n}}{g^{n+1}}.$$

$$\frac{x}{9-x^2} = \frac{2}{5} \frac{x^{2n+1}}{9^{n+1}} = \frac{2c}{5} + \frac{x^3}{81}.$$

7. (8 points) Find the interval of convergence for
$$\sum_{n=2}^{\infty} (-4)^n \frac{x^n}{2n\sqrt{\ln n}} = \sum_{n=2}^{\infty} \frac{(-4x)^n}{2n\sqrt{\ln n}}$$

$$A. (-\frac{1}{2}, \frac{1}{2}]$$

$$An = (-4)^n \frac{x^n}{2n\sqrt{\ln n}}$$

$$B. [-\frac{1}{2}, \frac{1}{2}]$$

$$C. (-\frac{1}{4}, \frac{1}{4}]$$

$$D. [-\frac{1}{4}, \frac{1}{4}]$$

$$E. (-4, 4]$$

$$An = (-1)^n \frac{1}{2n\sqrt{\ln n}}$$

$$An = (-$$

$$R=2 \quad \text{provided} \quad (x+2)^2 < 1.$$

$$|x+2| < \sqrt{2}$$

$$Radus of conv. \sqrt{2}.$$

9. (8 points) Use the root test to find the radius of convergence of the series
$$\sum_{n=1}^{\infty} \frac{x^n}{(1+\frac{1}{n})^{n^2}}$$

$$\frac{A. e}{B. 1} \left| \frac{2^{n}}{(1+\frac{1}{n})^{n}} \right|^{\frac{1}{n}} = \frac{|2|}{(1+\frac{1}{n})^{n}} \xrightarrow{\text{as } n \to \infty}$$

D.
$$e^2$$
E. $\frac{1}{e^2}$
 $|2| < 1$: $|2| < e$

10. (8 points) Let
$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (x-3)^n$$
 and let $F(x) = \int_3^x f(t) dt$. Which of the following gives an approximation of the value of $F(3.1)$ with an error less than or equal to 10^{-6} ?

gives an approximation of the value of
$$F(3.1)$$
 with an error less than or equal to 10^{-6} ?

A. $F(3.1) \sim \frac{1}{2(10)^2} - \frac{1}{6(10)^3} + \frac{1}{12(10)^4}$

F(x) = $\sum_{k=0}^{\infty} (-1)^{k-1} (x-3)^{k+1}$

B.
$$F(3.1) \sim \frac{1}{2(10)^2} - \frac{1}{6(10)^3} + \frac{1}{14(10)^4}$$

C.
$$F(3.1) \sim \frac{1}{2(10)^2} - \frac{1}{8(10)^3} + \frac{1}{15(10)^4}$$

D.
$$F(3.1) \sim \frac{1}{2(10)^2} - \frac{1}{8(10)^3} + \frac{1}{16(10)^4}$$

E.
$$F(3.1) \sim \frac{1}{2(10)^2} - \frac{1}{4(10)^3} + \frac{1}{6(10)^4}$$

$$F(x) = \sum_{h=1}^{\infty} \frac{(-1)^{n} \cdot (x-3)}{h(h+1)}$$

$$F(3.1) = \sum_{h=1}^{\infty} \frac{(-1)^{n-1}}{h(h+1)} \left(\frac{1}{10}\right)^{n+1}$$

We want
$$bN+1 \leq 10^{-6}$$
.
 $|N=3|$ We need the First 3 terms of $F(3.1)$

$$F(3.1) = \frac{1}{2(10)^2} - \frac{1}{6(10)^3} + \frac{1}{12(10)^4}$$

11. (8 points) The first three terms of the Maclaurin expansion of $f(x) = \frac{\sin(x^2) - x^2}{x^6}$ are:

A.
$$-\frac{1}{3!} + \frac{1}{7!}x^4 - \frac{1}{9!}x^8$$

$$Sim X = X - \frac{X^3}{3!} + \frac{\chi^5}{5!} - \frac{\chi^7}{7!} + \cdots$$

B.
$$-\frac{1}{3!} + \frac{1}{9!}x^4 - \frac{1}{6!}x^8$$

$$Sm x^2 = \chi^2 - \frac{\chi^6}{3!} + \frac{210}{5!} - \frac{214}{7!} + \cdots$$

C.
$$-\frac{1}{3!} + \frac{1}{7!}x^4 - \frac{1}{5!}x^8$$

$$\frac{D. -\frac{1}{3!} + \frac{1}{5!}x^4 - \frac{1}{9!}x^8}{\chi_6} \qquad \frac{\sin \chi^2 - \chi^2}{\chi_6} = -\frac{1}{3!} + \frac{\chi^4}{5!} - \frac{\chi^8}{7!} + \dots$$

D.
$$-\frac{1}{3!} + \frac{1}{5!}x^4 - \frac{1}{9!}x^8$$

$$\int \frac{\text{E. } -\frac{1}{3!} + \frac{1}{5!}x^4 - \frac{1}{7!}x^8}{\int \frac{1}{5!}x^4 - \frac{1}{7!}x^8}$$

12. (4 points) If a series
$$\sum_{n=1}^{\infty} a_n$$
 converges absolutely, then $\sum_{n=1}^{\infty} \frac{a_n}{n}$ also always converges absolutely.

A. True

B. False

Thus because $\left|\frac{a_n}{n}\right| \leq |a_n|$

13. (4 points) If
$$a_n \ge 0$$
 and the series $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} \sqrt{a_n}$ also always converges.

A. True

B. False

No. If $a_n = \frac{1}{n^2}$; $\sqrt{a_n} = \frac{1}{n}$ $\sum_{n=1}^{\infty} a_n$ Converges

14. (4 points) The series $\sum_{n=1}^{\infty} (-1)^n e^{\frac{1}{n}}$ converges conditionally.

A. True

B. False

False, the Series Leven Leven for day and exact exact.

No. If
$$a_n = \frac{1}{n^2}$$

$$\sqrt{a_n} = \frac{1}{n} \sum_{n=1}^{\infty} a_n$$

14. (4 points) The series
$$\sum_{n=0}^{\infty} (-1)^n e^{\frac{1}{n}}$$
 converges conditionally

MA162 — EXAM III — SPRING 2017 — APRIL 11, 2017 TEST NUMBER 02

INSTRUCTIONS:

- 1. Do not open the exam booklet until you are instructed to do so.
- 2. Before you open the booklet fill in the information below and use a # 2 pencil to fill in the required information on the scantron.
- 3. MARK YOUR TEST NUMBER ON YOUR SCANTRON
- 4. Once you are allowed to open the exam, make sure you have a complete test. There are 8 different test pages (including this cover page).
- 5. Do any necessary work for each problem on the space provided or on the back of the pages of this test booklet. Circle your answers on this test booklet.
- 6. There are 14 problems and the number of points each problem is worth is indicated next to the problem number. The maximum possible score is 100 points. No partial credit.
- 7. Do not leave the exam room during the first 20 minutes of the exam.
- 8. If you do not finish your exam in the first 50 minutes, you must wait until the end of the exam period to leave the room.
- 9. After you have finished the exam, hand in your scantron and your test booklet to your recitation instructor.

DON'T BE A CHEATER:

- 1. Do not give, seek or obtain any kind of help from anyone to answer questions on this exam. If you have doubts, consult only your instructor.
- 2. Do not look at the exam or scantron of another student.
- 3. Do not allow other students to look at your exam or your scantron.
- 4. You may not compare answers with anyone else or consult another student until after you have finished your exam, given it to your instructor and left the room.
- 5. Do not consult notes or books.
- 6. **Do not handle** phones or cameras, calculators or any electronic device until after you have finished your exam, given it to your instructor and left the room.
- 7. After time is called, the students have to put down all writing instruments and remain in their seats, while the TAs collect the scantrons and the exams.
- 8. Anyone who violates these instructions will have committed an act of academic dishonesty. Penalties for academic dishonesty include an F in the course. All cases of academic dishonesty will be reported to the Office of the Dean of Students.

I have read and understand the above statements regarding academic dishonesty:

STUDENT NAME:	SOLUTION	S	
STUDENT SIGNATURE:			
STUDENT ID NUMBER:			
SECTION NUMBER AND RE	ECITATION INSTRUCTO	OR:	

FORMULA SHEET

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}, \quad \text{for all } x.$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}, \quad \text{for all } x.$$

$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n, \text{ for all } x.$$

$$(1+x)^k = 1 + kx + \frac{k(k-1)}{2!} x^2 + \frac{k(k-1)(k-2)}{3!} x^3 + \dots \frac{k(k-1)(k-2)\dots(k-n+1)}{n!} x^n \dots$$

If
$$f(x) = \sum_{n=0}^{\infty} C_n (x-a)^n$$
, for $|x-a| < R$, then $\int_a^x f(t) dt = \sum_{n=0}^{\infty} \frac{C_n}{n+1} (x-a)^{n+1}$ for $|x-a| < R$.

If
$$f(x) = \sum_{n=0}^{\infty} C_n(x-a)^n$$
, for $|x-a| < R$, then $f'(x) dt = \sum_{n=1}^{\infty} nC_n(x-a)^{n-1}$ for $|x-a| < R$.

(8 points) Consider the two series

(i)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{5^n}$$
 and (ii) $\sum_{n=1}^{\infty} \frac{(-1)^n n}{\sqrt{n^3 + 1}}$.

(i)
$$\sum_{h=1}^{\infty} \frac{1}{5^{h}} = \frac{\frac{1}{5}}{1-\frac{1}{5}}$$

Which of the following is true?

A. (i) and (ii) converge conditionally

- B. (i) converges conditionally and (ii) converges absolutely
- C. (i) converges absolutely and (ii) converges conditionally
- (22) Converses because et 15 an alternatur D. (i) and (ii) converge absolutely
 - E. (i) and (ii) diverge

- 2. (8 points) The series $\sum_{n=1}^{\infty} \frac{1}{n(\ln(2n))}$
 - A. Converges by the ratio test
 - B. Diverges by the ratio test
 - C. Converges by the root test
 - D. Converges by the integral test
 - E. Diverges by the integral test

$$\begin{array}{lll}
5 & 1 & d \times & lm 2 \times = U \\
X(ln 2 \times) & du = \frac{d}{x}
\end{array}$$

3. (8 points) Which of the following series are convergent?

$$I. \sum_{n=1}^{\infty} \frac{3n^2}{n^3 + 1}$$

II.
$$\sum_{n=1}^{\infty} \frac{3n^2}{(n^3+1)^2}$$

III.
$$\sum_{n=1}^{\infty} \frac{3n^2}{(n^3+1)^{2/3}}$$

- A. II only
 - B. I and II only
 - C. II and III only
 - D. None of them
 - E. All of them

$$\frac{3n^2}{n^3+1} \sim \frac{3}{n}$$
 when n is large by

Canpausan fleener

$$\frac{3n^2}{(n^3+1)^2} \sim \frac{3n^2}{n^6} = \frac{3}{n^4} \cdot \text{for large}$$
Converges

$$\frac{3n^{2}}{(h^{3}+1)^{2/3}} \sim \frac{3n^{2}}{n^{2}} = 3 \quad \text{for } n$$
(h3+1)^{2/3} lause.

Series diverses

4. (8 points) For what values of a is the series $\sum_{n=1}^{\infty} \left(\frac{an}{n+1}\right)^n$ absolutely convergent?

A.
$$|a| \le 1$$

$$\frac{an}{+1}$$
 absolutely convergent

$$A. |a| \leq 1$$

C. $|a| \ge 1$

D.
$$|a| > 1$$

$$\left(\frac{n}{n}\right)^n = \left(\frac{n}{n}\right)^n$$

D.
$$|a| > 1$$

E. $|a| < 1$

When $a = 1$
 $\binom{n}{n+1}^n = \binom{1}{1+1}^n \xrightarrow{n} \frac{1}{e}$

as $n \to \infty$

Get the Seven diverses.

$$\left(\frac{-n}{n+1}\right)^n = \left(-1\right)^n \frac{1}{\left(1+\frac{1}{n}\right)} \text{ does not have}$$

$$\left(\frac{-n}{n+1}\right)^n = \left(-1\right)^n \frac{1}{\left(1+\frac{1}{n}\right)} \text{ a hunt}.$$

5. Compute the Taylor series of $f(x) = \ln x$ centered at 5 and use it to find $f^{(10)}(5)$.

A.
$$f^{(10)}(5) = \frac{7!}{5^{10}}$$

B.
$$f^{(10)}(5) = -\frac{10!}{5^{10}}$$
.

C.
$$f^{(10)}(5) = \frac{10!}{5!0!}$$

$$=\frac{1}{5}\sum_{k=1}^{2}$$

$$\sqrt{(x-5)^n} =$$

$$=\frac{1}{5}\sum_{n=0}^{\infty}\left(-1\right)^{n}\left(\frac{x-5}{5^{n}}\right)^{n}=\frac{2}{5}\left(-1\right)^{n}\frac{\left(x-5\right)}{5^{n+1}}$$

D.
$$f^{(10)}(5) = \frac{9!}{5^{10}}$$
.

E.
$$f^{(10)}(5) = -\frac{9!}{5^{10}}$$
.

$$lux = C + \int \frac{dx}{x} = C + \sum_{k=0}^{\infty} \frac{(-1)^{k} (x-5)^{k+1}}{(h+1)5^{k+1}}$$
Set $x = 5$, $C = lu \cdot 5$.

$$\frac{(x-5)}{(h+1)}$$

$$\int_{0}^{(0)}$$

$$f(5) = (-1)^{3}$$

$$lux = lu5 + \sum_{n=0}^{\infty} (-1)^n \frac{(x-5)}{(n+1)(5)} + 1$$

$$ef(x-5)^{10} = (-1)^n \frac{(x-5)}{(n+1)(5)} + 1$$

$$f(5) = -9!$$

$$f(5) = (-1)^n \frac{1}{10 \cdot 5^{10}} + 1$$

$$f(5) = -9!$$

$$f(5) = -9!$$

$$f(5) = -9!$$

$$f(5) = -9!$$

(8 points) Using a geometric series, the first two nonzero terms of a power series for $\frac{2x}{4+x^2}$ are

A.
$$\frac{x}{2} - \frac{x^3}{8}$$

A.
$$\frac{x}{2} - \frac{x^2}{8}$$

$$\frac{1}{4+x^{2}} = \frac{1}{4} \left(1 - \frac{x^{2}}{4} + \frac{x^{4}}{16} - \cdots \right)$$

$$\frac{c^2}{16} + \frac{x^2 - \cdots}{16}$$

B.
$$\frac{x}{2} + \frac{x^3}{8}$$

C.
$$\frac{x}{2} + \frac{x^3}{2}$$

$$\frac{1}{4} - \frac{2^2}{16} +$$

$$=\frac{1}{4}-\frac{2c^{4}}{11}+\frac{2c^{4}}{64}-\cdots$$

D.
$$\frac{x}{2} - \frac{x^2}{32}$$

E.
$$\frac{x}{2} + \frac{x^2}{32}$$

$$\frac{2x}{x} = \frac{2}{1}$$

$$\frac{2x}{4+x^2} = \frac{2x}{4} - \frac{2x^3}{16} + \frac{2x}{64} + \cdots$$

$$=\frac{x}{2}-\frac{x^{3}}{8}+$$

7. (8 points) Find the interval of convergence for
$$\sum_{n=2}^{\infty} \frac{3 \cdot 9^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)^{n}}{n \sqrt{\ln n}} x^{n} = \sum_{n=2}^{\infty} \frac{3 \cdot (9 \times)$$

8. (8 points) Find the Taylor series of $f(x) = \frac{x^2-1}{x^2+4x+7}$ centered at -2 and its radius of convergence. Notice that $x^2+4x+7=(x+2)^2+3$.

A.
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^n} (x+2)^n$$
, with radius $R = 3$

$$R = \frac{1}{3^n} \frac{1}{3^n} (x+2)^n$$
, with radius $R = \sqrt{3}$

$$R = \frac{1}{3^n} \frac{1}{1 + (x+2)^2}$$

D.
$$f(x) = \sum_{n=0}^{\infty} \frac{1}{3^{n+1}} (x+2)^{2n}$$
, with radius $R = \sqrt{3}$

E.
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1}} (x+2)^{2n}$$
, with radius $R = 3$

with radius
$$R = \sqrt{3}$$

$$= \sum_{h=0}^{\infty} (-1)^{h} \frac{(x+2)^{2}}{3^{h+1}}$$
Provided $(x+2)^{2} < 1$ $(x+2)^{1} < \sqrt{3}$
Radius of Converge $a : \sqrt{3}$

9. (8 points) Use the root test to find the radius of convergence of the series
$$\sum_{n=1}^{\infty} \frac{(1+\frac{1}{n})^{n^2}}{2^n} x^n.$$

$$an = \frac{\left(1 + \frac{1}{n}\right)^{n^2}}{2^n}$$

$$C. \frac{1}{2e} \qquad |a_n|^{1/n} = \frac{|a|}{2}, \quad (1+\frac{1}{n}) \rightarrow e \quad \frac{|a|}{2} < 1$$

D.
$$\frac{e^2}{2}$$

$$\begin{array}{c|c}
\hline
E. \frac{2}{e}
\end{array}$$

10. (8 points) Let
$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n} (x-3)^n$$
 and let $F(x) = \int_3^x f(t) dt$. Which of the following gives an approximation of the value of $F(3.1)$ with an error less than or equal to 10^{-6} ?

A.
$$F(3.1) \sim \frac{1}{4(10)^2} - \frac{1}{12(10)^3} + \frac{1}{36(10)^4}$$

B.
$$F(3.1) \sim \frac{1}{4(10)^2} - \frac{1}{12(10)^3} + \frac{1}{24(10)^4}$$

C.
$$F(3.1) \sim \frac{1}{4(10)^2} - \frac{1}{8(10)^3} + \frac{1}{15(10)^4}$$

D.
$$F(3.1) \sim \frac{1}{4(10)^2} - \frac{1}{8(10)^3} + \frac{1}{16(10)^4}$$

E.
$$F(3.1) \sim \frac{1}{4(10)^2} - \frac{1}{4(10)^3} + \frac{1}{6(10)^4}$$

$$F(x) = \sum_{h=1}^{\infty} \frac{(-1)^{h-1}}{2h(h+1)} (x-3)^{h+1}.$$

$$F(3.1) = \sum_{h=1}^{\infty} \frac{(-1)^{h-1}}{2n(h+1)} \left(\frac{1}{10}\right)^{h+1}$$

$$b_n = \frac{1}{2n(n+1)} \left(\frac{1}{10}\right)^{n+1}$$

$$2(h+1)(h+2)10^{h+2} \ge 10^6$$
: $h=3$ We held the first 3 terms.

$$F(3.1) \sim \frac{1}{4(10)^2} - \frac{1}{12(10)^3} + \frac{1}{24(10)^4}$$

11. (8 points) The first three terms of the Maclaurin expansion of $f(x) = \frac{\cos(x^2) - 1}{x^4}$ are:

A.
$$-\frac{1}{2!} + \frac{1}{4!}x^4 - \frac{1}{4!}x^8$$

$$Cos 2 = 1 - \frac{2^2}{2!} + \frac{2t}{4!} - \frac{2^6}{6!} + \frac{2^6}{8!}$$

B.
$$-\frac{1}{2!} + \frac{1}{4!}x^4 + \frac{1}{8!}x^8$$

$$\frac{B. -\frac{1}{2!} + \frac{1}{4!}x^4 + \frac{1}{8!}x^8}{C_{C_7} \times ^2 - 1} = -\frac{\chi^4}{2!} + \frac{\chi^8}{4!} - \frac{\chi^{12}}{6!} + \frac{\chi^{16}}{8!}$$

$$\frac{C. -\frac{1}{2!} + \frac{1}{4!}x^4 - \frac{1}{6!}x^8}{D. -\frac{1}{2!} + \frac{1}{6!}x^4 - \frac{1}{10!}x^8} \qquad C_{C_7} \times ^2 - 1 = -\frac{\chi^4}{2!} + \frac{\chi^8}{4!} - \frac{\chi^8}{6!} + \cdots$$

D.
$$-\frac{1}{2!} + \frac{1}{6!}x^4 - \frac{1}{10!}x^8$$

$$\frac{C_{5}x^{2}-1}{x^{4}}=-\frac{1}{21}+\frac{x^{4}}{41}-\frac{x^{8}}{61}+\cdots$$

E.
$$-\frac{1}{2!} + \frac{1}{6!}x^4 - \frac{1}{8!}x^8$$

12. (4 points) If a series
$$\sum_{n=1}^{\infty} a_n$$
 diverges, then $\sum_{n=1}^{\infty} \frac{a_n}{n}$ also always diverges.

A. True

No. If $a_n = \frac{1}{n}$, $a_n = \frac{1}{n}$.

 $a_n = \frac{1}{n}$.

13. (4 points) If
$$a_n \ge 0$$
 and the series $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} a_n^2$ also always diverges.

14. (4 points) The series
$$\sum_{n=0}^{\infty} (-1)^n \cos(\frac{1}{n})$$
 diverges.