Problem of the Week

Solution of Problem No. 1 (Fall 2001 Series)

Problem: Determine all the square integers whose decimal representations end in 2001. What is the smallest of these numbers?

Solution (by Mike Hamburg, Sr. St. Joseph H.S., South Bend)

We seek \(n^2 \equiv 2001 \pmod{10^4} \). \(n = 1001 \) is obviously a solution, so \(n^2 \equiv 1001^2, n^2 - 1001^2 \equiv 0 \), so \((n+1001)(n-1001) \equiv 0 \) (all mod \(10^4 \)). \(10^4 = 2^4 \cdot 5^4 \), so \(2^4 | (n+1001)(n-1001) \). Although 2 can divide both \(n + 1001 \) and \(n - 1001 \), 4 cannot divide them both because they differ by 2002. Similarly, \(5^4 | (n + 1001)(n - 1001) \) and since 5 cannot divide them both, \(5^4 | (n + 1001) \) or \(5^4 | (n - 1001) \). We also have \(8 | (n + 1001) \) or \(8 | (n - 1001) \). Reducing mod \(5^4 = 625 \) and 8, we have \(n \equiv \pm 1 \pmod{8} \) and \(n \equiv \pm 249 \pmod{5^4} \). Since 625 \(\equiv 1 \pmod{8} \) and 8 is inverse to 547 (mod 625), the Chinese Remainder Theorem gives us \(n \equiv (\pm 1) \cdot 625 + (\pm 249) \cdot 8 \cdot 547 \pmod{5^4 \cdot 8 = 5000} \). Reducing mod 5000, we have \(n \equiv 249, 1001, 3999 \) or 4751 (mod 5000). We check that the squares of these numbers end in 2001 and that \((n + k5000)^2 = k^25000^2 + 10000kn + n^2 \equiv n^2 \pmod{5000} \).

Also solved (at least partially) by:

Undergraduates: Jim Hill (Jr. MA), Piti Irawan (Sr. CS/MA), Aftab Mohammed Jalal (So. CS/MA), Stevie Schrauder (Sr. CS/MA), Eric Tkaczyk (Jr. EE/MA)

Graduates: Rajender Adibhatla (MA), John Hunter (MA), Chris Lomont (MA), K. H. Sarma (Nuc E), Amit Shirsat (CS), P. Ghosh & D. Subramanian (CHME)

Faculty & Staff: Steven Landy (Phys. at IUPUI), Chris Maxwell (OB & FC, Purdue)

Others: Jonathan Landy (Warren Central H.S., Indpls), Jason VanBilliard (Fac. Phila. Biblical Univ. Langhorne, PA), Aditya Utturwar (Grad. AE, Georgia Tech)

One unacceptable solution was received.