Problem of the Week

Solution of Problem No. 9 (Fall 2001 Series)

Problem: Determine, with proof, all the real-valued differentiable functions \(f \), defined for real \(x > 0 \), which satisfy \(f(x) + f(y) = f(xy) \) for all \(x, y > 0 \).

Solution (by Brahma N. R. Vanga, Gr. Nucl. Eng., edited by the Panel)

Differentiation w.r.t. \(x \) and then w.r.t. \(y \) gives

\[
\begin{align*}
 f'(x) &= yf'(xy), \\
 f'(y) &= xf'(x, y),
\end{align*}
\]

hence

\[
xf'(x) = yf'(y) \quad \forall x, y > 0,
\]

so

\[
x f'(x) = c \text{ (constant)}.\]

Integration gives \(f(x) = c \ln x + C \), but since \(f(1) + f(1) = f(1), f(1) = 0 \), so \(C = 0 \). The general solution is

\[
f(x) = c \ln x, \quad c \in \mathbb{R}.
\]

Also solved by:

Undergraduates: Damir Dzhafarov (Fr. MA), Haizhi Lin (Jr. MA), Gregg Sutton (Fr. Sci.)

Graduates: Danlei Chen (CHME), Keshavdas Dave (EE), Gajath Gunatillake (MA), George Hassapis (MA), Sravanthi Konduri (CE), A. Mangasuli (MA), Ashish Rao (EE), Amit Shirsat (CS), D. Subramanian & P. Ghosh (CHME)

Faculty: Steven Landy (Phys. at IUPUI)

Others: Jayprakash Chipalkatti (U.B.C. Canada), Donald Dichmann (Calif.), Jing Shao (Gr. So. China Tech.)

One unacceptable solution was received.