Problem: Suppose \(f(x) \) is a polynomial with integer coefficients and degree \(n \geq 2 \), and suppose \(|f(x_i)| \) is prime for at least \(2n + 1 \) integers \(x_i \). Show that:

a) \(f(x) \) is irreducible, that is, \(f(x) \) is not the product of two polynomials of degree \(\geq 1 \) with integer coefficients.

b) for at least one value of \(n \), (a) does not hold if \(2n + 1 \) is replaced by \(2n \).

Solution (by Eric Tkaczyk, Sr. EE/MA)

Proof:

a) Assume, conversely, that \(f(x) = g(x)h(x) \), where \(g(x) \), \(h(x) \) are polynomials of degree \(m \) and \(k \) respectively \(\geq 1 \), with integer coefficients and \(m + k = n \). Now, the polynomials \(g(x) + 1 \), \(g(x) - 1 \), \(h(x) + 1 \), and \(h(x) - 1 \) can have at most \(m \), \(m \), \(k \), and \(k \) distinct integer roots, respectively. So there are at most \(m + m + k + k = 2n \) \(x_i \)'s for which \(|g(x_i)| \) or \(|h(x_i)| = 1 \). Thus, if \(f(x) \) is reducible, \(|f(x)| \) will be prime for at most \(2n \) integers \(x_i \). This proves (a).

b) As a counterexample for the case \(n = 2 \), consider \(f(x) = (2x + 1)(x - 2) \). Clearly, \(f(x) \) is reducible, and \(|f(x)| \) is prime for \(x \) in \(\{-1, 0, 1, 3\} \). So (a) does not hold if \(2n + 1 \) is replaced by \(2n \).

Also solved by:

Undergraduates: Jason Andersson (Fr. MA), Ryan Machtmes (Sr. E&AS)
Graduates: Qi Xu (ChE), Thierry Zell (MA)
Faculty: Steven Landy (Physics at IUPUI)
Others: J.L.C. (Fishers, IN), Dharmashankar Subramanian (Honeywell Labs, Minneapolis, MN), Yuichi Yamane (Gr. MA, Fukuoka U., Japan)

J.L.C. (Fishers, IN) submitted a correct solution of Problem 5 which, though late, we have credited to him.