Problem: A real-valued function $f(x)$ has a continuous second order derivative $f''(x) > 0$ on $a < x < b$. It is to be approximated by a linear function $\ell(x) \leq f(x)$ so that $\int_a^b (f(x) - \ell(x))dx$ is minimal. Determine $\ell(x)$.

Solution (by Rob Pratt, U. North Carolina, Chapel Hill, NC)

It is clear that $\ell(x) = f(x)$ for at least one value of x since otherwise we can shift the graph of ℓ up, reducing the value of the integral. Hence the graph of ℓ is tangent to the graph of f, and therefore $\ell(x) = f(c) + f'(c)(x - c)$ for some c in (a, b). Note that minimizing

$$\int_a^b (f(x) - \ell(x))dx = \int_a^b f(x)dx - \int_a^b \ell(x)dx$$

is equivalent to maximizing

$$\int_a^b \ell(x)dx = \int_a^b (f'(c)x + f(c) - cf'(c))dx$$

$$= \frac{f'(c)(b^2 - a^2)}{2} + (f(c) - cf'(c))(b - a)$$

$$= (b - a) \left(\frac{f'(c)(a + b)}{2} + f(c) - cf'(c) \right),$$

which is equivalent to maximizing $g(c) = f'(c)(a + b)/2 + f(c) - cf'(c)$. Now

$$g'(c) = f''(c)(a + b)/2 + f'(c) - cf''(c) - f'(c) = f''(c)((a + b)/2 - c).$$

Since $f''(x) > 0$, we have $g'(c) > 0$ for $c < (a + b)/2$, $g'(c) = 0$ for $c = (a + b)/2$, and $g'(c) < 0$ for $c > (a + b)/2$. Hence g is maximized when $c = (a + b)/2$, and so

$$\ell(x) = f \left(\frac{a + b}{2} \right) + f' \left(\frac{a + b}{2} \right) \left(x - \frac{a + b}{2} \right).$$

The solution is the line tangent to the curve at the midpoint of the interval (a, b).
Also solved by:

Undergraduates: Chad Aeschliman (So. ECE), Jason Anema (Jr. Mgt), Michael Chun Chang (So. Bio/Ch), Jignesh V. Mehta (So. Phys)

Graduates: Vikram Buddhi (MA), Jianguang Guo (Phys), Ankur Jain (ChE), Yifang Liang (ECE), Sridhar Maddipati (ChE), Gaurav Sharma (ECE)

Faculty: Steven Landy (Physics at IUPUI)

Others: Jayprakash Chipalkatti (Vancouver, B.C., Can.), Namig Mammadov (Baku, Azerbaijan), Henry Shin (undergr. LA, CA), Dr. Troy Siemers (V.M.I.), Benjamin K. Tsai (NIST)

Five incorrect solutions were received.