Problem of the Week
Solution of Problem No. 10 (Fall 2005 Series)

Problem: Which positive integers n are expressible in at least one way as the sum of two or more consecutive positive integers? Prove your answer.

Solution (by Prithwijit De & Sonali Dasgupta, U.C.C, Republic of Ireland)

Claim: All positive integers n except the powers of 2 can be written as sum of two or more consecutive positive integers. Suppose n can be written as a sum of ℓ consecutive numbers beginning with $(k+1)$. Then

$$n = (k+1) + (k+2) + \ldots + (k+\ell) = \frac{\ell(2k+\ell+1)}{2}.$$

Now, one of ℓ or $(2k+\ell+1)$ is odd (and the other one is even). Therefore, n is not a power of 2.

Conversely, let n be a positive integer with an odd factor. Since n has an odd factor, so does $2n$, and we can write $2n = f_1f_2$ where one of f_1 or f_2 is odd, the other one is even, and $1 < f_1 < f_2$. Let $k = \frac{f_2-f_1-1}{2}$, $\ell = f_1$, then $f_2 = 2k + \ell + 1$, so that

$$n = \frac{f_1f_2}{2} = \frac{\ell(2k+\ell+1)}{2} = (k+1) + (k+2) + (k+3) + \ldots + (k+\ell).$$

At least partially solved by:

Graduates: Eu Jin Toh (ECE), Qi Xu (Ch.E.)

Others: Alexander Bilik (Pomona, CA), Georges Ghosn (Quebec), Wing–Kai Hon (Post-doc, CS), Steven Landy (IUPUI Physics staff), Kevin Laster (Indiana), Aaditya Muthukumar (Chennai, India), Steve Spindler (Chicago), David Stigant (Teacher, Houston, TX)