Problem: Let A_1, A_2, A_3, A_4 be the areas of the faces of a tetrahedron. Let γ_{ij} be the interior angle between the faces with areas A_i and A_j. Prove that

$$A_4^2 = A_1^2 + A_2^2 + A_3^2 - 2A_1A_2 \cos \gamma_{12} - 2A_2A_3 \cos \gamma_{23} - 2A_3A_1 \cos \gamma_{31}. $$

Solution (by Steven Landy, edited by the Panel)

Let \vec{A}_i be vectors perpendicular to the sides $A_i, i = 1, 2, 3, 4$, pointing to the exterior, with length equal to the area of the corresponding face A_i. Then it is easy to see that $\vec{A}_1 + \vec{A}_2 + \vec{A}_3 + \vec{A}_4 = 0$ by representing each \vec{A}_i as one half of the vector product of two edges.

Square both sides of

$$-\vec{A}_4 = \vec{A}_1 + \vec{A}_2 + \vec{A}_3$$

to get

$$A_4^2 = A_1^2 + A_2^2 + A_3^2 + 2A_1A_2 \cos(\pi - \gamma_{12})$$

$$+ 2A_1A_3 \cos(\pi - \gamma_{13}) + 2A_2A_3 \cos(\pi - \gamma_{23}),$$

which proves the equality.

At least partially solved by:

Undergraduates: Ramul Kumar (So. E)

Graduates: Supradeepa Venkatasubbaiah (ECE)

Others: Hoan Duong (San Antonio College), Georges Ghosn (Quebec), Bhilahari Jeevanesan (Germany), K. Jeevarajan (Sri Lanka), Jonathan Landy (Grad student, UCLA)