PROBLEM OF THE WEEK
Solution of Problem No. 7 (Fall 2006 Series)

Problem:
Given a triangle \triangle, let $d(P)$, $e(P)$, $f(P)$ denote the distances of a point P inside \triangle from the three sides of \triangle and let

$$M(P) = \max(d(P), e(P), f(P)).$$

Prove that Q in \triangle is the center of the inscribed circle of \triangle if and only if

$$M(Q) < M(P) \text{ for all } P \neq Q, P \text{ in } \triangle.$$

Solution (by the Panel)
Let a, b, c be the sides of the triangle \triangle. Then

$$ad(P) + be(P) + cf(P) = 2A,$$

where A is the area of \triangle. If $P = Q$, then

$$r(a + b + c) = 2A,$$

where $r = d(Q) = e(Q) = f(Q) = M(Q)$. Then (1) yields

$$(a + b + c) M(P) \geq 2A = (a + b + c) M(Q)$$

with equality if and only if $P = Q$. This completes the proof.

At least partially solved by:

Undergraduates: Alan Bernstein (Sr. ECE), Nate Orlow (So, Math), Prateek Tandon (E)

Graduates: Tom Engelsman (ECE)

Others: Magnus Botnan (Norway), Yunting Gao (China), George Hokkaken (H.S. student, CA), Jonathan Landy (Grad student, UCLA)