Problem: Let C be a closed convex curve with continuously turning tangent. Prove that, if \triangle is an inscribed triangle of maximal perimeter, then the normals to C at the vertices of \triangle bisect the angles of \triangle.

Solution (by Andrea Altamura, Graduate student, Italy)

Let P_0, P_1 and P_2 the vertices of the triangle of maximal perimeter inscribed in C. Without loss of generality we can assume that $P_0 = (0,0)$ and $P_1 = (a,0)$. Let

$$C = \{(x(t), y(t)) : t \in [0,1]\}, \quad P_t = (x(t), y(t)).$$

Consider $p(t)$ the perimeter of the \triangle determined by P_0, P_1 and P_t, that is

$$p(t) = |P_t - P_0| + |P_t - P_1| + |P_1 - P_0| = \sqrt{x(t)^2 + y(t)^2} + \sqrt{(x(t) - a)^2 + y(t)^2} + |a|$$

for $t \in [0,1]$. Finding the critical points, we get

$$0 = p'(t)$$

$$= \frac{x(t)x'(t) + y(t)y'(t)}{\sqrt{x(t)^2 + y(t)^2}} + \frac{(x(t) - a)x'(t) + y(t)y'(t)}{\sqrt{(x(t) - a)^2 + y(t)^2}}$$

$$= \frac{\langle x(t), y(t) \rangle \cdot \langle x'(t), y'(t) \rangle}{|P_t - P_0|} + \frac{\langle x(t) - a, y(t) \rangle \cdot \langle x'(t), y'(t) \rangle}{|P_t - P_1|}$$

$$= |\langle x'(t), y'(t) \rangle| \cos(\theta_0) - |\langle x'(t), y'(t) \rangle| \cos(\theta_1)$$

where θ_0 is the angle between the vector $P_t - P_0$ and the tangent line of C at P_t, and θ_1 is the angle between the $P_t - P_1$ and the tangent line of C at P_t (with opposite direction). Since the curve has continuously turning tangent we can choose the parametrization such that $|\langle x'(t), y'(t) \rangle| \neq 0$. Thus $\theta_0 = \theta_1$. Now, since C is convex, this is the same that saying that at all critical points of $p(t)$ the normal of C at P_t bisects the angles of the $\triangle(P_0, P_1, P_t)$ at P_t. Since P_2 is a critical point of $p(t)$ the proof is finished.

The problem was also solved by:

Graduates: Vitezslav Kala (Math), Tairan Yuwen (Chemistry)

Others: Mohamed Alimi (Tunisia), Manuel Barbero (New York), Gruian Cornel (IT, Romania), Elie Ghosn (Montreal, Quebec), Steven Landy (IUPUI Physics staff), Sorin Rubinstein (TAU faculty, Israel), Craig Schroeder (Grad student, Stanford Univ.)