PROBLEM OF THE WEEK
Solution of Problem No. 13 (Fall 2012 Series)

Problem:
What is the maximum value of a and the minimum value of b for which
$$
\left(1 + \frac{1}{n}\right)^{n+a} \leq e \leq \left(1 + \frac{1}{n}\right)^{n+b}
$$
for every positive integer n.

Solution: (by Gruian Cornel, Cluj–Napoca, Romania)

The answer is $a_{\text{max}} = \frac{1}{\ln 2} - 1$ and $b_{\text{min}} = \frac{1}{2}$. Consider the functions $f, g, h : [1, \infty) \to \mathbb{R}$,
$$
f(x) = \frac{1}{\ln(1 + 1/x)} - x \quad \text{with} \quad f(1) = \frac{1}{\ln 2} - 1 > 0.
$$
Applying L’Hospital twice we have

$$
\lim_{x \to \infty} f(x)^{L'Hospital} = \lim_{x \to \infty} \frac{\ln(1 + 1/x) + \frac{1}{x+1} L'Hospital}{\frac{1}{x+1} - \frac{1}{x}}
$$
\begin{align*}
&= \lim_{x \to \infty} \frac{\frac{1}{x} - \frac{1}{x+1} - \frac{1}{(x+1)^2}}{\frac{1}{x^2} - \frac{1}{(x+1)^2}} \\
&= \lim_{x \to \infty} \frac{\frac{1}{x+1} - \frac{1}{x}}{\frac{1}{x^2}} = \lim_{x \to \infty} \frac{1}{x} + \frac{1}{x+1} = \frac{1}{2}.
\end{align*}
$$

Now we prove that f is increasing.
$$
f'(x) = \frac{g(x)}{(\ln(1 + 1/x))^2} \quad \text{where} \quad g(x) = \frac{1}{x} - \frac{1}{x+1} - (\ln(1 + 1/x))^2.
$$
\begin{align*}
g'(x) &= \left(1 - \frac{1}{x+1}\right)h(x) \quad \text{where} \quad h(x) = 2\ln(1 + 1/x) - \frac{1}{x+1} - \frac{1}{x} \quad \text{and} \\
h'(x) &= \left(\frac{1}{x+1} - \frac{1}{x}\right)^2 > 0.
\end{align*}

Therefore h is increasing, $\lim_{x \to \infty} h(x) = 0$ and so $h < 0$. Therefore $g' < 0$, g is decreasing, $\lim_{x \to \infty} g(x) = 0$ and so $g > 0$. Therefore $f' > 0$, and so f is increasing. Hence $f(1) \leq f(x) < \frac{1}{2}$ so
$$
\ln \left(1 + \frac{1}{x}\right)^{x+\frac{1}{x}+\frac{1}{x^2} - 1} \leq 1 < \ln \left(1 + \frac{1}{x}\right)^{x+\frac{1}{x}}
$$
and so for any $n \in \mathbb{N}^*$,
$$
\left(1 + \frac{1}{n}\right)^{n+\frac{1}{n^2} - 1} \leq e < \left(1 + \frac{1}{n}\right)^{n+\frac{1}{n}}.
$$
Note that $b_{\text{min}} = \frac{1}{2}$ is optimal but there is no n such that the equality holds in the right side of the double inequality.

The problem was also solved by:

Undergraduates: Chenkai Wang (So. Math)
Others: Marco Biagini (Italy), Pierre Castelli (Antibes, France), Hongwei Chen (Professor, Christopher Newport Univ., Virginia), Hubert Desprez (Paris, France), Tom Engelsman (Tampa, FL), Sachin Khapli (Professor, N.Y. University, Abu Dhabi), Anastasios Kotronis (Athens, Greece), Steven Landy (Physics Faculty, IUPUI), Matthew Lim, Perfetti Paolo (Roma, Italy), Sorin Rubinstein (TAU faculty, Tel Aviv, Israel), Craig Schroeder (Postdoc. UCLA), Steve Spindler (Chicago)