Problem: Let C be a smooth closed curve (no corners) in the plane with a convex interior, and P a given point on C. Show that there are points Q, R on C such that $\triangle PQR$ is equilateral.

Solution (by Julien Santini, Lacordaire H.S., France; edited by the Panel)

Let an angle of 60° revolve counter-clockwise about P, with initial position of one of the arms tangent to C at P. The intercepts of the two arms are initially 0 and some $q > 0$. Turn the angle until the other arm becomes tangent to C, and the intercepts are now some $r > 0$ and 0. Hence the difference of the intercepts changes from $0 - q < 0$ to $r - 0 > 0$. By continuity there is a position of the two arms $\overrightarrow{PQ}, \overrightarrow{PR}$ where $|PQ| = |PR|$, hence $\triangle PQR$ is equilateral.

Also solved by:

Undergraduates: Eric Tkaczyk (Jr. EE/MA), Yee-Ching Yeow (Jr. Math)

Faculty: Steven Landy (Phys. at IUPUI)

Others: Damir D. Dzhafarov (Sr. Harrison H.S., WL) Mike Hamburg (Jr. St. Joseph’s H.S., South Bend), Jonathan Landy (Jr. Warren Central H.S., Indpls.)