Problem of the Week
Solution of Problem No. 11 (Spring 2001 Series)

Problem: For \(n = 1, 2, \cdots \), set \(S_n = \sum_{k=0}^{3n} \binom{3n}{k} \), \(T_n = \sum_{k=0}^{n} \binom{3n}{3k} \).
Prove that \(|S_n - 3T_n| = 2 \).

Solution (by Steven Landy, Faculty, Physics at IUPUI)

Let \(w = e^{2\pi i/3} \), so \(w^2 = \overline{w} \) (conjugate), \(w^3 = 1, 1 + w + w^2 = 0 \). Then

\[
S_n = \sum_{k=0}^{n} \binom{3n}{k} 1^k = (1 + 1)^{3n}
\]

by the Binomial Theorem. Also

\[
U_n = \sum_{k=0}^{n} \binom{3n}{k} w^k = (1 + w)^{3n}
\]

and

\[
V_n = \sum_{k=0}^{n} \binom{3n}{k} w^{2k} = (1 + \overline{w})^{3n}.
\]

Because \(1^k + w^k + w^{2k} = 0 \) unless \(k \) is a multiple of 3, when it is 3,

\[
S_n + U_n + V_n = 3T_n,
\]

and so

\[
3T_n - S_n = U_n + V_n = (1 + w)^{3n} + (1 + \overline{w})^{3n} = (-w^2)^{3n} + (-\overline{w}^2)^{3n}
\]

\[
= (-1)^n [e^{4\pi in} + e^{-4\pi in}] = 2(-1)^n,
\]

so \(|S_n - 3T_n| = 2 \).

Also solved by:

- **Undergraduates:** Stevie Schraudner (Jr. CS/MA), Eric Tkaczyk (Jr. EE/MA)
- **Graduates:** Ashish Rao (ECE), Dharmashankar Subramanian (CHE)
- **Others:** Jonathan Landy (Jr. Warren Central H.S., Indpls.), Bob Pratt (Grad. UNC Chapel Hill), Julien Santini (Lacordaire H.S., France), Aditya S. Utturwar (Aero, Georgia Tech)