PROBLEM OF THE WEEK
Solution of Problem No. 1 (Spring 2005 Series)

Problem: Suppose \(b \) and \(c \) are real numbers randomly chosen in the interval \([0,1]\). What is the probability that the distance in the complex plane between the two roots of the equation \(z^2 + bz + c = 0 \) is not greater than 1?

Solution (by Georges Ghosn, Quebec, edited by the Panel)

The distance between the 2 roots, which is equal to \(\sqrt{\Delta} = \sqrt{b^2 - 4c} \), is not greater than 1 if and only if \(-1 \leq b^2 - 4c \leq 1\). That means that the point \(M(b,c) \) lies on the intersection of the region in between the 2 parabolas \(y = \frac{x^2 - 1}{4} \) and \(y = \frac{x^2 + 1}{4} \) and the square delimited by \(x = 0 \), \(x = 1 \), \(y = 0 \), \(y = 1 \).

The probability is equal to the area of this region, which is \(\int_0^1 \frac{x^2 + 1}{4} dx = \frac{1}{3} \), over the area of the square which is equal to 1. Consequently the probability is equal to \(\frac{1}{3} \).

Also solved by:

Undergraduates: Jason Anema (Sr. MA), Alan Bernstein, Chris Giznopoulous (Fr.)

Graduates: Ashish Rao (ECE)

Others: Bhilahari Jeevanesan (Germany), Carol Kupier (Instructor, Purdue), Steven Landy (IUPUI), Sok-Joon Lee (HS student, DE), A. Plaza (ULPGC, Spain), Gabriel Vrinceanu (Bucharest)