Problem:
(a) Show that the number of ways in which an odd positive integer \(n \) can be written as a sum of two or more consecutive positive integers is equal to the number of divisors \(d \) of \(2n \) such that \(1 < d < \sqrt{2n} \).

(b) Give all these sums for \(n = 45 \).

Solution (by Georges Ghosn, Quebec, edited by the Panel)

Notice first, that each such sum is uniquely determined by the number \(d \) of its terms.

(a) (i) Let’s show first that if \(n \) can be written as a sum of \(d \) (\(d > 1 \)) consecutive positive integers then \(d \) is divisor of \(2n \) and \(1 < d < \sqrt{2n} \).

Indeed \(n = m + (m + 1) + \cdots + (m + d - 1) \) where \(m > 0 \)

\[
\Leftrightarrow n = md + \frac{d(d-1)}{2} \Leftrightarrow 2n = d(2m + d - 1) \Rightarrow d \text{ is a divisor of } 2n
\]

but

\[
2m - 1 > 0 \Rightarrow d^2 < d(2m + d - 1) = 2n
\]

\[
\Rightarrow d < \sqrt{2n}
\]

(ii) Let’s show now that if \(d \) is a divisor of \(2n \) and \(1 < d < \sqrt{2n} \) then there is a unique \(m > 0 \) so that \(n = m + (m + 1) + \cdots + (m + d - 1) \).

Indeed \(2n = d \times k \) but \(d < \sqrt{2n} \Rightarrow k > \sqrt{2n} > d \)

\[
2n = d \times k = d(2m + d - 1) \Rightarrow 2m = k - (d - 1)
\]

but \(n \) is odd \(\Rightarrow d \) and \(k \) don’t have the same parity

\Rightarrow (d - 1) \text{ and } k \text{ have the same parity}

\Rightarrow m = \frac{k-(d-1)}{2} > 0 \text{ is an integer, and is unique.}

Consequently the 2 sets have the same number of elements.

(b) \(n = 45 \) \(\text{ the divisors of } 2n = 90 \text{ are } d \text{ and } 1 < d \leq 9 \) \(\text{ are } d = 2, 3, 5, 6, 9. \)

\[
45 = 22 + 23 \quad (m = 22, \quad d = 2)
45 = 14 + 15 + 16 \quad (m = 14, \quad d = 3)
45 = 7 + 8 + 9 + 10 + 11 \quad (m = 7, \quad d = 5)
45 = 5 + 6 + 7 + 8 + 9 + 10 \quad (m = 5, \quad d = 6)
45 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 \quad (m = 1, \quad d = 9)
\]
Also solved by:

Undergraduates: Jason Anema (Sr. MA)

Others: Aaditya Muthukumaran (Chennai, India), A. Plaza (ULPGC, Spain), Steve Spindler