PROBLEM OF THE WEEK
Solution of Problem No. 6 (Spring 2007 Series)

Problem: Let \(E \) be an ellipse which is not a circle. Among all inscribed rectangles, show that

(a) exactly one is a square, and
(b) at least one has greater area than the square one.

Solution (by Louis J. Cote, Emeritus Professor of Statistics)

Let \(E \) in standard position have the equation, \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) with \(a \neq b \). Most older texts for courses in analytic geometry show that the locus of midpoints of a family of parallel chords with slope \(m \) is a straight line through the center of the ellipse with slope \(-b^2/(a^2m) = m' \), a diameter of the ellipse. A system of chords of slope \(m' \) similarly gives rise to a conjugate diameter of slope \(m \).

For any chord in the slope \(m \) system there is a chord of equal length symmetrically placed on the other side of the center. The end points of these two are vertices of a parallelogram inscribed in the ellipse. Every inscribed parallelogram may be gotten this way. Since the line connecting the midpoints of opposite sides of a parallelogram is parallel to the other sides, the latter have the conjugate slope, \(m' \). Since \(m \) and \(m' \) have opposite signs, conjugate diameters cannot be in the same quadrant.

For inscribed rectangles the slopes, \(m, m' \), are perpendicular, \(mm' = -1 = -b^2/a^2 \). Because \(a \neq b \), this equation must be degenerate, so one of \(m, m' \) must be zero. Thus every inscribed rectangle’s sides are parallel to the axes of \(E \) and opposite sides are on opposite sides of the axes. If the rectangle’s vertex in the first quadrant is \((x_1, y_1) \), its area is \(4x_1y_1 \) whose critical point under the constraint that \((x_1, y_1) \) be on \(E \) is reached when \(x_1b = y_1a \), as may be found by calculus. The minimal area is for a rectangle with either \(y_1 \) or \(x_1 \) equal to zero at which this equation becomes degenerate, so the critical point is a maximum. The largest inscribed rectangle has its quadrant \(I \) vertex at the intersection of \(E \) with \(y = bx/a \). Since \(a \neq b \), this is not the vertex of a square which answers (b). There is only one square, that with its quadrant \(I \) vertex at the intersection of \(E \) with the line \(y = x \), which answers (a).

Also solved by:

Undergraduates: Noah Blach

Graduates: Tomek Czajka (CS)
Others: Mark Crawford (Waubonsee Community College instructor), Georges Ghosn (Quebec), Steven Landy (IUPUI Physics)