Problem No. 13 (Spring 2012 Series)

A tetrahedron has a base which is an equilateral triangle of edge length one, and is placed so that the base is sitting flat on a table. The other three faces are congruent isosceles triangles with one edge an edge of the base (of course) and the other edges of length three. Find the length of the shortest path, lying in the union of the three isosceles faces, which starts and ends at the same vertex of the base, and which meets every line segment drawn from the top vertex to the perimeter of the base triangle.

A panel in the Mathematics Department publishes a challenging problem once a week and invites college & pre-college students, faculty, and staff to submit solutions. The objective of this is to stimulate and cultivate interest in good mathematics, especially among younger students. Solutions are due within two weeks from the date of publication. They can be faxed to (765) 494-0548 or sent by campus or U.S. mail (no E-mail please) to:

PROBLEM OF THE WEEK, 5th Floor, Math Sciences Bldg., Purdue Univ.,
150 North University St., West Lafayette, IN 47907-2067
Solvers should include their name, address, and status at the University or school.

The names of those who submitted correct solutions will be posted in the Math. Library, along with the best solution. Every Purdue student who submits three or more correct solutions will receive a Certificate of Merit. A prize fund of $300.00 will be distributed among the Purdue undergraduates who have contributed at least six correct solutions for the total Spring 2012 series.