PROBLEM OF THE WEEK
Solution of Problem No. 11 (Spring 2013 Series)

Problem:
Let \(c_0 > 0 \), \(c_1 > 0 \), and \(c_{n+1} = \sqrt{c_n} + \sqrt{c_{n-1}}, \ n \geq 1 \).
Show that \(\lim_{n \to \infty} c_n \) exists and find this limit.

Solution: (by Julien Bureaux, Paris, France)

Let \(c_0 > 0 \), \(c_1 > 0 \), and
\[
 c_{n+1} = \sqrt{c_n} + \sqrt{c_{n-1}}, \quad n \geq 1 \tag{1}
\]
Show that \(\lim_{n \to \infty} c_n \) exists and find this limit.

We will prove that
\[
 \lim \sup c_n \leq 4 \leq \lim \inf c_n \tag{2}
\]
First remark that the sequence \(b_n = \max\{4, c_n, c_{n-1}\} \) is non-increasing. Indeed, the trivial lower bound \(b_n \geq 4 \) yields \(c_{n+1} \leq 2\sqrt{b_n} \leq b_n \); we conclude with \(b_{n+1} = \max\{4, c_{n+1}, c_n\} \leq \max\{4, b_n, b_n\} = b_n \). As a consequence, an upper bound for \(c_n \) is \(\max\{4, c_0, c_1\} \). In the same way, \(c_n \geq \min\{4, c_0, c_1\} \).

These bounds show that both \(\lim \inf c_n \) and \(\lim \sup c_n \) lie in \((0, \infty)\). Furthermore we deduce from (1) that
\[
 \lim \inf c_n \geq 2 \sqrt{\lim \inf c_n}, \quad \lim \sup c_n \leq 2 \sqrt{\lim \sup c_n}
\]
This proves (2), hence the result.

The problem was also solved by:

Graduates: Tairan Yuwen (Chemistry)

Others: Hongwei Chen (Professor, Christopher Newport Univ., Virginia), Gruian Cornel (Cluj-Napoca, Romania), Hubert Desprez (Paris, France), Massimo Frittelli (Italy), Andrew Garmon (Sr, Phys. Christopher Newport Univ.), Lincoln James (HSE&Co. Chicago), Steven Landy (Physics Faculty, IUPUI), Wei-Xiang Lien (Graduate Student, National Kaohsiung Univ., Taiwan), Jean Pierre Mutanguha (Student, Oklahoma Christian Univ.), Christopher Nelson (PostDoc, UCSD), Paolo Perfetti (Roma, Italy), Craig Schroeder (PostDoc. UCLA), Steve Spindler (Chicago), Chris Willy (Adjunct faculty, George Washington Univ.)