PROBLEM OF THE WEEK

Solution of Problem No. 14 (Fall 2000 Series)

Problem: Consider the equations $N=x^{3}(3 x+1)=y^{2}(y+1)^{3}$, where x, y are relatively prime positive integers. Show that there is only one possible value for N. Find it.

Solution (by Steven Landy, Fac. Physics at IUPUI)
Since $(x, y)=1$ it follows that $x^{3} \mid(y+1)^{3}$, hence $x \mid(y+1), x \leq y+1$. Similarly $y^{2} /(3 x+1)$, so $y^{2} \leq 3 x+1$. Combining the inequalities gives $x^{2}-5 x=0$. As x is positive, only $x=1,2,3,4,5$ are possible. Trying these values in $x^{3}(3 x+1)=y^{2}(y+1)^{3}$, we find that only $x=5, y=4$ work, so $N=4^{2} \cdot 5^{3}=2000$ is the only solution.

Also solved by:
Undergraduates: Stevie Schraudner (Jr. CS)
Graduates: Vikram Buddhi (MA), Gajath Gunatillake (MA), Yi-Ru Huang (Stat), Chris Lomont (MA)

Faculty \& Staff: Sebastien Mercier (Research, Chem.), Ralph Shines (GAANN Fellow, MA)

Others: Damir D. Dzhafarov (Sr. Harrison H.S., WL)

Two incorrect solutions were received.

