PROBLEM OF THE WEEK

 Solution of Problem No. 4 (Fall 2000 Series)Problem: Let $x_{1}, x_{2}, \cdots, x_{n}$ be n points in space. Between any pair $\left(x_{i}, x_{j}\right)$ there is an arrow either from x_{i} to x_{j} or from x_{j} to x_{i} (this is a "complete oriented graph of size n "). Show that there is a path $x_{a_{1}} \rightarrow x_{a_{2}} \rightarrow \cdots \rightarrow x_{a_{n}}$ which includes all of x_{1}, \ldots, x_{n} and proceeds in the direction of the arrows.

Solution (by the Panel)
Proof by induction on n. The assertion is trivial for $n=1$ and $n=2$. Assume it is true for all $k<n$. Choose any $k, 1<k<n$. Let A be the set of i for which $x_{i} \rightarrow x_{k}$, and B the set of i for which $x_{k} \rightarrow x_{i}$. By the induction assumption the $\left\{x_{i}\right\}$ with $i \in A$ can be arranged as $\left\{x_{a_{i}}\right\}$ so that $x_{a_{1}} \rightarrow x_{a_{2}} \rightarrow \cdots \rightarrow x_{a_{k-1}}$; likewise the set $\left\{x_{i}\right\}$ with $i \in B$ can be arranged so that $x_{a_{k+1}} \rightarrow \cdots \rightarrow x_{a_{n}}$. Then $x_{a_{1}} \rightarrow x_{a_{2}} \rightarrow \cdots \rightarrow x_{a_{k}} \rightarrow \cdots \rightarrow x_{a_{n}}$ is the desired path.

Solved by:
Undergraduates: Kevin Darkes (Soph. A\&AE), James Lee (Sr. MA/CS), Yee-Ching Yeow (Jr. Math)

Graduates: Vikram Buddhi (MA), Yalin Firat Celikler (MA), Gajath Gunatillake (MA), Wook Kim (MA), Chris Lomont (MA), Mohammed Majidi (MA visitor)

Faculty: Steven Landy (Phys. at IUPUI)
Others: Damir D. Dzhafarov (Sr. Harrison H.S., Laf), Jake Foster (Soph. Harrison H.S., WL), Mike Hamburg (Jr. St. Joseph H.S., South Bend)

There was one incorrect solution.

