PROBLEM OF THE WEEK

 Solution of Problem No. 6 (Fall 2000 Series)Problem: Evaluate the integral $I=\int_{0}^{\infty} \frac{\operatorname{Arctan}(a x)-\operatorname{Arctan}(b x)}{x} d x$ where a and b are positive numbers. Hint: Express I as a double integral.

Solution (by Gajath Gunatillake, Gr. Math, and many others)

$$
\operatorname{Arctan} a x-\operatorname{Arctan} b x=\int_{b}^{a} \frac{x}{1+x^{2} t^{2}} d t
$$

Hence,

$$
I=\int_{0}^{\infty} \frac{1}{x} \int_{b}^{a} \frac{x}{1+x^{2} t^{2}} d t d x=\int_{0}^{\infty} \int_{b}^{a} \frac{1}{1+x^{2} t^{2}} d t d x
$$

Change of order of integration gives

$$
\begin{aligned}
I & =\int_{b}^{a} \int_{0}^{\infty} \frac{1}{1+x^{2} t^{2}} d x d t=\int_{b}^{a} \frac{1}{t} \int_{0}^{\infty} \frac{t}{1+x^{2} t^{2}} d x d t \\
& =\int_{b}^{a} \frac{1}{t}\left(\frac{\pi}{2}-0\right) d t=\frac{\pi}{2} \log \left(\frac{a}{b}\right) .
\end{aligned}
$$

Also solved by:
Undergraduates: Stevie Schraudner (Jr. CS), Yee-Ching Yeow (Jr. Math)
Graduates: Vikram Buddhi (MA), Yi-Ru Huang (Stat), Wook Kim (MA), Sravanthi Konduri (CE), B. N. Reddy Vanga (Nucl E)

Faculty: Steven Landy (Phys. at IUPUI)
Others: Mike Hamburg (Jr. St. Joseph's H.S., South Bend)
There was one incorrect solution.

Correction: A correction must be made to the published solution of Problem No. 5, as pointed out by Vikram Buddhi.

$$
P_{n}(x)>x \frac{x^{2 n+1}+1}{x+1}+2 n+1
$$

should be replaced by

$$
(1+x) P_{n}(x)=x \frac{x^{2 n+1}+1}{x+1}+2 n+1, \text { hence } P_{n}(x)>0 \text { for } x>0
$$

