PROBLEM OF THE WEEK

 Solution of Problem No. 8 (Fall 2000 Series)Problem: Let \triangle be an isosceles triangle for which the length of a side and the length of the base are rational. Prove that the radius of the incircle of \triangle is rational if and only if the two right triangles formed by the altitude to the base are similar to a right triangle with integer side lengths.

Solution (by the Panel)
Let r be the length of the radius of the inscribed circle, a the length of the side, $2 b$ the length of the base, h the length of the altitude to the base. The area A of the triangle can be expressed in two ways:

$$
2 A=r(2 a+2 b)=2 b h,
$$

hence $r=b h /(a+b)$, and r is rational if and only if h is rational.
Now if h is rational, then $\exists n \in \mathbb{N}$ such that $a n, b n, h n$ are all in \mathbb{N}, and form the sides of a triangle similar to the original triangle with sides a, b, h.

Conversely, if the triangle with sides b, a, h is similar to one with integral sides then $\exists t \in \mathbb{R}$ such that $b^{2} t^{2}=a^{2} t^{2}+h^{2} t^{2} ; b t, a t, h t \in \mathbb{N}$, but a is rational, so t is rational and, therefore, h is rational.

Also solved by:
Undergraduates: Jeffrey D. Moser (Fr. MA/CS), Yee-Ching Yeow (Jr. Math)
Graduates: Gajath Gunatillake (MA), Wook Kim (MA)
Faculty: Steven Landy (Phys. at IUPUI)
Others: Damir D. Dzhafarov (Sr. Harrison H.S., WL), Mike Hamburg (Jr. St. Joseph's H.S., South Bend)

Late: A correct solution of Problem 7 was mailed on time from Japan, but was received late. The solver was Tetsuji Nishikura, a physician of Hyougo Prefecture.

