PROBLEM OF THE WEEK

 Solution of Problem No. 9 (Fall 2000 Series)Problem: Define a strip S to be the open set of points in the plane lying between two parallel lines. Let $|S|$ be the width of S. Given an infinite sequence $\left\{S_{i}\right\}$ of strips, show that there are points in the plane that are not in any of the S_{i} if $\Sigma\left|S_{i}\right|$ converges.

Solution (by Steven Landy, Fac. Physics at IUPUI)
Let $\Sigma_{1}^{\infty}\left|S_{i}\right|=w$. Consider the intersection of the union of the strips with a circular disk of radius R. Each strip S_{i} intersects the disk with a length $\leq 2 R$. So the area of the intersection is $\leq 2 R\left|S_{i}\right|$ and the area of the intersection of $\cup S_{i}$ with the disk $\leq 2 R \Sigma\left|S_{i}\right| \leq 2 R w$. Choose $R>2 w / \pi$ then the area of the circle in $R^{2} \pi>2 w R \geq 2 R \Sigma\left|S_{i}\right|$, so some of the points of the disk are not in any of the S_{i}.

Also solved by:
Graduates: Gajath Gunatillake (MA)
Others: Mike Hamburg (Jr. St. Joseph's H.S., South Bend)

There was one unacceptable solution.

