PROBLEM OF THE WEEK

 Solution of Problem No. 8 (Fall 2001 Series)Problem: Evaluate $\lim _{x \rightarrow 0} \frac{\sin (\operatorname{Arctan} x)-\tan (\operatorname{Arcsin} x)}{\operatorname{Arcsin}(\tan x)-\operatorname{Arctan}(\sin x)}$.

Solution (by Steven Landy, Fac. Physics at IUPUI)
The Taylor series of these functions are

$$
\begin{array}{ll}
\sin x=x-\frac{x^{3}}{6}+0\left(x^{5}\right) & \sin ^{-1}(x)=x+\frac{x^{3}}{6}+0\left(x^{5}\right) \\
\tan x=x+\frac{x^{3}}{3}+0\left(x^{5}\right) & \tan ^{-1}(x)=x-\frac{x^{3}}{3}+0\left(x^{5}\right)
\end{array}
$$

Substituting these into our expression gives

$$
\begin{aligned}
& \frac{\left[\left(x-\frac{x^{3}}{3}\right)-\frac{\left(x-\frac{x^{3}}{3}\right)^{3}}{6}\right]-\left[\left(x+\frac{x^{3}}{6}\right)+\frac{\left(x+\frac{x^{3}}{6}\right)^{3}}{3}\right]+0\left(x^{5}\right)}{\left[\left(x+\frac{x^{3}}{3}\right)+\frac{\left(x+\frac{x^{3}}{3}\right)^{3}}{6}\right]-\left[\left(x-\frac{x^{3}}{6}\right)-\frac{\left(x-\frac{x^{3}}{6}\right)^{3}}{3}\right]+0\left(x^{5}\right)} \\
& =\frac{x-\frac{x^{3}}{3}-\frac{x^{3}}{6}-x-\frac{x^{3}}{6}-\frac{x^{3}}{3}+0\left(x^{5}\right)}{x+\frac{x^{3}}{3}+\frac{x^{3}}{6}-x+\frac{x^{3}}{6}+\frac{x^{3}}{3}+0\left(x^{5}\right)}=\frac{-x^{3}+0\left(x^{5}\right)}{x^{3}+0\left(x^{5}\right)} .
\end{aligned}
$$

Thus the limit as $x \rightarrow 0$ is -1 .

Also solved by:
Undergraduates: Haizhi Lin (Jr. MA)
Graduates: Ali R. Butt (ECE), Danlei Chen (CHME), D. Subramanian \& P. Ghosh (CHME)

Others: Michael Hamburg (Sr. St. Joseph's H.S., South Bend), Dan Vanderkam (Sr. St. Joseph's H.S., South Bend)

Five unacceptable solutions were received.
Remark. It is unacceptable to replace e.g. $\sin (\operatorname{Arc} \tan x)$ by $\sin x$ in this problem.

