PROBLEM OF THE WEEK

 Solution of Problem No. 9 (Fall 2001 Series)Problem: Determine, with proof, all the real-valued differentiable functions f, defined for real $x>0$, which satisfy $f(x)+f(y)=f(x y)$ for all $x, y>0$.

Solution (by Brahma N. R. Vanga, Gr. Nucl. Eng., edited by the Panel)
Differentiation w.r.t. x and then w.r.t. y gives

$$
f^{\prime}(x)=y f^{\prime}(x y), \quad f^{\prime}(y)=x f^{\prime}(x, y),
$$

hence

$$
x f^{\prime}(x)=y f^{\prime}(y) \quad \forall x, y>0
$$

so

$$
x f^{\prime}(x)=c(\text { constant }) .
$$

Integration gives $f(x)=c \ln x+C$, but since $f(1)+f(1)=f(1), f(1)=0$, so $C=0$. The general solution is

$$
f(x)=c \ln x, \quad c \in \mathbb{R} .
$$

Also solved by:
Undergraduates: Damir Dzhafarov (Fr. MA), Haizhi Lin (Jr. MA), Gregg Sutton (Fr. Sci.)

Graduates: Danlei Chen (CHME), Keshavdas Dave (EE), Gajath Gunatillake (MA), George Hassapis (MA), Sravanthi Konduri (CE), A. Mangasuli (MA), Ashish Rao (EE), Amit Shirsat (CS), D. Subramanian \& P. Ghosh (CHME)

Faculty: Steven Landy (Phys. at IUPUI)
Others: Jayprakash Chipalkatti (U.B.C. Canada), Donald Dichmann (Calif.), Jing Shao (Gr. So. China Tech.)

One unacceptable solution was received.

