PROBLEM OF THE WEEK

Solution of Problem No. 10 (Fall 2001 Series)

Problem: Given a triangle $\triangle A B C$ and a point S inside, show that, if the areas of triangles $\triangle A B S, \triangle B C S, \triangle C A S$ are equal, then S is the centroid of $\triangle A B C$.

Solution (by Steven Landy, Fac. Physics at IUPUI, edited by the Panel)
Let $\overline{A S}, \overline{B S}, \overline{C S}$ be extended to intersect $\overline{B C}, \overline{A C}, \overline{A B}$ in $A^{\prime}, B^{\prime}, C^{\prime}$, resp. Let $\langle A B C\rangle$ denote the area of $\triangle A B C$, similarly for other triangles. Let q denote the common area of $\triangle A S B, \triangle B S C, \triangle C S A$. Now

$$
\begin{aligned}
& \frac{\left\langle A S C^{\prime}\right\rangle}{\left\langle B S C^{\prime}\right\rangle}=\frac{\left|A C^{\prime}\right|}{\left|B C^{\prime}\right|}, \quad \text { the triangles have the same height } \\
& \frac{\left\langle A C C^{\prime}\right\rangle}{\left\langle B C C^{\prime}\right\rangle}=\frac{\left|A C^{\prime}\right|}{\left|B C^{\prime}\right|}, \quad \text { the triangles have the same height. }
\end{aligned}
$$

So

$$
\begin{aligned}
\frac{\left\langle A C C^{\prime}\right\rangle}{\left\langle B C C^{\prime}\right\rangle} & =\frac{\left\langle A S C^{\prime}\right\rangle+q}{\left\langle B S C^{\prime}\right)+q}=\frac{\left\langle A S C^{\prime}\right\rangle}{\left\langle B S C^{\prime}\right\rangle} ; \\
1+\frac{q}{\left\langle B S C^{\prime}\right\rangle} & =\frac{\left\langle B S C^{\prime}\right\rangle+q}{\left\langle B S C^{\prime}\right\rangle}=\frac{\left\langle A S C^{\prime}\right\rangle+q}{\left\langle A S C^{\prime}\right\rangle}=1+\frac{q}{\left\langle A S C^{\prime}\right\rangle}
\end{aligned}
$$

which implies $\left\langle A S C^{\prime}\right\rangle=\left\langle B S C^{\prime}\right\rangle$, then $\left|A C^{\prime}\right|=\left|B C^{\prime}\right|$, so $\overline{C C}^{\prime}$ is a median of $\triangle A B C$. So are $\overline{A A}^{\prime}, \overline{B B}^{\prime}, S$ is the intersection of the medians, S is the centroid.

Also solved by:
Undergraduates: Stevie Schraudner (Sr. CS/MA), Eric Tkaczyk (Jr. EE/MA)
Graduates: Ali R. Butt (ECE), Keshavdas Dave (EE), Gajath Gunatillake (MA), George Hassapis (MA), Ashish Rao (EE), Amit Shirsat (CS), D. Subramanian \& P. Ghosh (CHME)

Others: Dane Brooke, Jayprakash Chipalkatti (U.B.C. Canada), Michael Hamburg (Sr. St. Joseph's H.S., South Bend), Kunarajasingam Jeevarajan (Sri Lanka), Jonathan Landy (Warren Central H.S., Indpls)

Two unacceptable solutions were received.

