PROBLEM OF THE WEEK

Solution of Problem No. 11 (Fall 2001 Series)

Problem: Let $\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$ be a non-zero sequence having period N, that is, $a_{k+N}=a_{k}$ for all $k=0,1,2, \ldots$ Show that
(1) $\sum_{k=0}^{\infty} a_{k} z^{k}$ is a rational function for $|z|<1$,
(2) $\sum_{k=0}^{\infty} a_{k}$ diverges, but
(3) $\lim _{z \rightarrow 1-} \sum_{k=0}^{\infty} a_{k} z^{k}$ exists if and only if $\sum_{k=0}^{N-1} a_{k}=0$; find the limit.

Solution (by Damir Dzhafarov (Fr. MA), edited by the Panel)
(1) Replace a_{k} with $a_{k(\bmod N)}$ for all $k=0,1,2, \ldots$ Then the terms of the sum may be grouped as $\left(a_{0} z^{0}+a_{1} z^{1}+\cdots+a_{N-1} z^{N-1}\right) \sum_{k=0}^{\infty} z^{k N}$. Since $|z|<1$, this becomes

$$
\frac{\sum_{k=0}^{N-1} a_{k} z^{k}}{1-z^{N}}
$$

a rational function.
(2) $\sum_{k=0}^{n} a_{k}$ diverges because $\lim _{k \rightarrow \infty} a_{k} \neq 0$.
(3) In view of (1) it suffices to find $\lim _{z \rightarrow 1-} \frac{\sum_{k=0}^{N-1} a_{k} z^{k}}{1-z^{N}}$. The numerator of the expression within the limit approaches $\sum_{k=0}^{N-1} a_{k}$, while the denominator goes to 0 . Hence, the limit exists only if $\sum_{k=0}^{N-1} a_{k}=0$, in which case, by L'Hôpital's Rule, it becomes

$$
\lim _{z \rightarrow 1-} \frac{\sum_{k=1}^{N-1} a_{k} k z^{k-1}}{-N z^{N-1}}=-\lim _{z \rightarrow 1-} \sum_{k=1}^{N-1} \frac{a_{k} k}{N} z^{k-N}=-\sum_{k=1}^{N-1} \frac{a_{k} k}{N}
$$

Also solved by:
Undergraduates: Haizhi Lin (Jr. MA), Yue Wei Lu (Sr. EE)
Graduates: Keshavdas Dave (EE), Gajath Gunatillake (MA), George Hassapis (MA), A. Mangasuli (MA), Ashish Rao (EE), D. Subramanian \& P. Ghosh (CHME) Thierry Zell (MA)

Faculty: Steven Landy (Phys. at IUPUI)
Others: Angel Plaza (U. Las Palmas, Spain)

