PROBLEM OF THE WEEK Solution of Problem No. 11 (Fall 2001 Series)

Problem: Let $\{a_0, a_1, a_2, ...\}$ be a non-zero sequence having period N, that is, $a_{k+N} = a_k$ for all k = 0, 1, 2, ... Show that

- (1) $\sum_{k=0}^{\infty} a_k z^k$ is a rational function for |z| < 1,
- (2) $\sum_{k=0}^{\infty} a_k$ diverges, but
- (3) $\lim_{z\to 1-} \sum_{k=0}^{\infty} a_k z^k$ exists if and only if $\sum_{k=0}^{N-1} a_k = 0$; find the limit.

Solution (by Damir Dzhafarov (Fr. MA), edited by the Panel)

(1) Replace a_k with $a_{k \pmod{N}}$ for all $k = 0, 1, 2, \dots$ Then the terms of the sum may be grouped as $(a_0 z^0 + a_1 z^1 + \dots + a_{N-1} z^{N-1}) \sum_{k=0}^{\infty} z^{kN}$. Since |z| < 1, this becomes $\frac{\sum_{k=0}^{N-1} a_k z^k}{1 - z^N},$

a rational function.

(2) $\sum_{k=0}^{n} a_k$ diverges because $\lim_{k \to \infty} a_k \neq 0$.

(3) In view of (1) it suffices to find $\lim_{z \to 1^{-}} \frac{\sum_{k=0}^{N-1} a_k z^k}{1-z^N}$. The numerator of the expression within the limit approaches $\sum_{k=0}^{N-1} a_k$, while the denominator goes to 0. Hence, the limit

exists only if $\sum_{k=0}^{N-1} a_k = 0$, in which case, by L'Hôpital's Rule, it becomes

$$\lim_{z \to 1^{-}} \frac{\sum_{k=1}^{N-1} a_k k z^{k-1}}{-N z^{N-1}} = -\lim_{z \to 1^{-}} \sum_{k=1}^{N-1} \frac{a_k k}{N} z^{k-N} = -\sum_{k=1}^{N-1} \frac{a_k k}{N}$$

Also solved by:

<u>Undergraduates</u>: Haizhi Lin (Jr. MA), Yue Wei Lu (Sr. EE)

<u>Graduates</u>: Keshavdas Dave (EE), Gajath Gunatillake (MA), George Hassapis (MA), A. Mangasuli (MA), Ashish Rao (EE), D. Subramanian & P. Ghosh (CHME) Thierry Zell (MA)

Faculty: Steven Landy (Phys. at IUPUI)

Others: Angel Plaza (U. Las Palmas, Spain)