PROBLEM OF THE WEEK

Solution of Problem No. 13 (Fall 2001 Series)

Problem: Let the sequence $\left\{x_{n}\right\}$ of integers (modulo 11) be defined by the recurrence relation $x_{n+3} \equiv \frac{1}{3}\left(x_{n+2}+x_{n+1}+x_{n}\right)(\bmod 11)$ for $n=1,2, \cdots$. Show that every such sequence $\left\{x_{n}\right\}$ is either constant or periodic with period 10 .

Solution (by the Panel)
The general solution of a 3 -term recurrence relation is a linear combination of 3 linearly independent solutions. Three linearly independent solutions (which can be arrived at by the use of the characteristic equation $3 r^{3}-r^{2}-r-1 \equiv 0$) are:

$$
x_{n} \equiv 1^{n}, \quad x_{n} \equiv(-3)^{n}, \quad x_{n} \equiv(-5)^{n} \quad(\bmod 11)
$$

So the general solution is

$$
x_{n} \equiv A+B(-3)^{n}+C(-5)^{n} \quad(\bmod 11) .
$$

Now $(-3)^{10} \equiv 1, \quad$ while $(-3)^{2} \not \equiv 1, \quad(-3)^{5} \not \equiv 1$, and also $(-5)^{10} \equiv 1, \quad$ while $(-5)^{2} \not \equiv 1, \quad(-5)^{5} \not \equiv 1$.

So $x_{n} \equiv A$ if $B=C=0$, while $\left\{x_{n}\right\}$ is constant or $\left\{x_{n}\right\}=\left\{A+B(-3)^{n}+C(-5)^{n}\right\}$ if $B C \neq 0$, which has period 10 .

Solved by:
Undergraduates: Haizhi Lin (Jr. MA), Stevie Schraudner (Sr. CS/MA), Eric Tkaczyk (Jr. EE/MA)

Graduates: Danlei Chen (CHME), Amit Shirsat (CS)
Faculty: Steven Landy (Phys. at IUPUI)
Others: Unnamed person from City Univ. of Hong Kong

