PROBLEM OF THE WEEK

Solution of Problem No. 14 (Fall 2001 Series)

Problem: Consider the motion of a mass in the (x, y) plane. Given that the angular velocity $\omega=x \dot{y}-y \dot{x}\left(\cdot\right.$ is $\frac{d}{d t}$) and the Lenz vector (ℓ_{x}, ℓ_{y}), where $\ell_{x}=-\frac{\omega}{k} \dot{y}+\frac{x}{r}$, $\ell_{y}=\frac{\omega}{k} \dot{x}+\frac{y}{r} \quad\left(r=\left(x^{2}+y^{2}\right)^{1 / 2}\right)$ are constant (independent of t), show that the acceleration vector points toward the point where $r=0$ and its magnitude is inversely proportional to r^{2}.

Solution (by Mike Hamburg, Sr. St. Joseph H.S., South Bend, edited by the Panel) First we note that $\dot{r}=\frac{x \dot{x}+y \dot{y}}{r}$. Now, we have

$$
\begin{aligned}
\left(\dot{\ell}_{x}, \dot{\ell}_{y}\right) & =\left(-\frac{\omega}{k} \ddot{y}+\frac{\dot{x} r-\frac{x(x \ddot{x}+y \dot{y})}{r}}{r^{2}}, \quad \frac{\omega}{k} \ddot{x}+\frac{\dot{y} r-\frac{x(x \dot{x}+y \dot{y})}{r}}{r^{2}}\right) \\
& =\left(-\frac{\omega}{k} \ddot{y}+\frac{\dot{x} y^{2}-x y \dot{y}}{r^{3}}, \quad \frac{\omega}{k} \ddot{x}+\frac{x^{2} \dot{y}-x y \dot{x}}{r^{3}}\right) \\
& =\left(-\frac{\omega}{k} \ddot{y}-\frac{y \omega}{r^{3}}, \quad \frac{\omega}{k} \ddot{x}+\frac{x \omega}{r^{3}}\right) \\
& =\omega\left(-\frac{\ddot{y}}{k}-\frac{y}{r^{3}}, \quad \frac{\ddot{x}}{k}+\frac{x}{r^{3}}\right) .
\end{aligned}
$$

If $\omega \neq 0$, since $\left(\dot{\ell}_{x}, \dot{\ell}_{y}\right)=0$, it follows that the acceleration

$$
(\ddot{x}, \ddot{y})=-\frac{k}{r^{2}}\left(\frac{x}{r}, \frac{y}{r}\right)
$$

which is parallel to (x, y), points toward the origin as long as $k>0$, and has magnitude $\frac{|k|}{r^{2}}$ as required.
Mike Hamburg observes that the conclusion does not hold if $\omega=0$.

Also solved by:
Undergraduates: Eric Tkaczyk (Jr. EE/MA)
Faculty: Steven Landy (Phys. at IUPUI)

