## PROBLEM OF THE WEEK

Solution of Problem No. 12 (Fall 2002 Series)

Problem: Let $f$ be a function $\mathbb{R} \rightarrow \mathbb{R}$ which is $n$ times differentiable. Determine the coefficient of $h^{n}$ in the Taylor expansion of $f\left((x+h)^{2}\right)$. (The answer should be in the form $\sum_{k} f^{(k)}\left(x^{2}\right) P_{k}(x)$ where $P_{k}(x)$ is a monomial.)

Solution (by Yifan Liang, Gr. ECE, edited by the Panel)
The Taylor expansion of $f\left((x+h)^{2}\right)$ at $x^{2}$ is

$$
f\left((x+h)^{2}\right)=f\left(x^{2}+h(h+2 x)\right)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x^{2}\right)}{k!} h^{k}(h+2 x)^{k}+o\left(h^{n}\right) .
$$

Only items with $\left[\frac{n}{2}\right] \leq k \leq n$ contribute to $h^{n}$, while also

$$
(h+2 x)^{k}=\sum_{i=0}^{k}\binom{k}{i}(2 x)^{k-i} h^{i} .
$$

Let $i=n-k \geq 0, k-i=2 k-n \geq 0$. The coefficient is

$$
\sum_{k=\left[\frac{n}{2}\right]}^{n} \frac{f^{(k)}\left(x^{2}\right)}{k!}\binom{k}{n-k}(2 x)^{2 k-n}=\sum_{k=\left[\frac{n}{2}\right]}^{n} f^{(k)}\left(x^{2}\right) P_{k}(x)
$$

where $P_{k}(x)=\frac{1}{k!}\binom{k}{n-k}(2 x)^{2 k-n}=\frac{(2 x)^{2 k-n}}{(n-k)!(2 k-n)!}, \quad\left[\frac{n}{2}\right] \leq k \leq n$.
Also solved by:
Graduates: K. H. Sarma (NucE), Dharmashankar Subramanian (ChE)

One incorrect solution was received.

