PROBLEM OF THE WEEK

Solution of Problem No. 2 (Fall 2003 Series)

Problem: A real-valued function $f(x)$ has a continuous second order derivative $f^{\prime \prime}(x)>0$ on $a<x<b$. It is to be approximated by a linear function $\ell(x) \leq f(x)$ so that $\int_{a}^{b}(f(x)-\ell(x)) d x$ is minimal. Determine $\ell(x)$.

Solution (by Rob Pratt, U. North Carolina, Chapel Hill, NC)
It is clear that $\ell(x)=f(x)$ for at least one value of x since otherwise we can shift the graph of ℓ up, reducing the value of the integral. Hence the graph of ℓ is tangent to the graph of f, and therefore $\ell(x)=f(c)+f^{\prime}(c)(x-c)$ for some c in (a, b). Note that minimizing

$$
\int_{a}^{b}(f(x)-\ell(x)) d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} \ell(x) d x
$$

is equivalent to maximizing

$$
\begin{aligned}
\int_{a}^{b} \ell(x) d x & =\int_{a}^{b}\left(f^{\prime}(c) x+f(c)-c f^{\prime}(c)\right) d x \\
& =\frac{f^{\prime}(c)\left(b^{2}-a^{2}\right)}{2}+\left(f(c)-c f^{\prime}(c)\right)(b-a) \\
& =(b-a)\left(\frac{f^{\prime}(c)(a+b)}{2}+f(c)-c f^{\prime}(c)\right)
\end{aligned}
$$

which is equivalent to maximizing $g(c)=f^{\prime}(c)(a+b) / 2+f(c)-c f^{\prime}(c)$. Now

$$
g^{\prime}(c)=f^{\prime \prime}(c)(a+b) / 2+f^{\prime}(c)-c f^{\prime \prime}(c)-f^{\prime}(c)=f^{\prime \prime}(c)((a+b) / 2-c)
$$

Since $f^{\prime \prime}(x)>0$, we have $g^{\prime}(c)>0$ for $c<(a+b) / 2, g^{\prime}(c)=0$ for $c=(a+b) / 2$, and $g^{\prime}(c)<0$ for $c>(a+b) / 2$. Hence g is maximized when $c=(a+b) / 2$, and so

$$
\ell(x)=f\left(\frac{a+b}{2}\right)+f^{\prime}\left(\frac{a+b}{2}\right)\left(x-\frac{a+b}{2}\right) .
$$

The solution is the line tangent to the curve at the midpoint of the interval (a, b).

Also solved by:
Undergraduates: Chad Aeschliman (So. ECE), Jason Anema (Jr. Mgt), Michael Chun Chang (So. Bio/Ch), Jignesh V. Mehta (So. Phys)

Graduates: Vikram Buddhi (MA), Jianguang Guo (Phys), Ankur Jain (ChE), Yifang Liang (ECE), Sridhar Maddipati (ChE), Gaurav Sharma (ECE)

Faculty: Steven Landy (Physics at IUPUI)
Others: Jayprakash Chipalkatti (Vancouver, B.C., Can.), Namig Mammadov (Baku, Azerbaijan), Henry Shin (undergr. LA, CA), Dr. Troy Siemers (V.M.I.), Benjamin K. Tsai (NIST)

Five incorrect solutions were received.

