PROBLEM OF THE WEEK

 Solution of Problem No. 3 (Fall 2003 Series)Problem: How long (in minutes) should the Earth day be so that persons at latitude 42° will experience zero gravity?
(Consider the Earth as a sphere of radius 6371 km and gravity $981 \mathrm{~cm} / \mathrm{sec}^{2}$ at 42°.)

Solution (by Troy Siemers, Asst. Prof. of Math., Va. Military Inst., Lexington, VA)
Zero gravity will be achieved if the force due to gravity $F_{g}=m g$ is balanced against the component of centrifugal force in the direction toward the center of the earth $F_{c}=\frac{m v^{2}}{r} \cdot \cos \left(42^{\circ}\right)$ where $v=\frac{2 \pi r}{T}$, where T is length of one day and r is the distance from the surface of the Earth to the axis of rotation (at 42° latitude). Note that $r=r_{e} \cos \left(42^{\circ}\right)$ where $r_{e}=6371 \mathrm{~km}$. We compute:

$$
\begin{aligned}
F_{g} & =F_{c} \\
m g & =\frac{m v^{2}}{r} \cdot \cos \left(42^{\circ}\right) \\
g & =\frac{4 \pi^{2} r_{e} \cos ^{2}\left(42^{\circ}\right)}{T^{2}}
\end{aligned}
$$

so that

$$
T=2 \pi \cos \left(42^{\circ}\right) \sqrt{\frac{r_{e}}{g}}
$$

If $r_{e}=637,100,000 \mathrm{~cm}$ and $g=981 \mathrm{~cm} / \mathrm{s}^{2}$ then $T \approx 3763 \mathrm{~s}$ or 62.7 minutes.
Also solved by:
Undergraduates: Akira Matsudaira (ECE), Neel Mehta (So. AAE),
Graduates: Jianguang Guo (Phys), Ankur Jain (ChE), Yifan Liang (ECE), K. H. Sarma (NucE),

Faculty: Steven Landy (Physics at IUPUI)
Others: Greg Nelson (U.C. Santa Cruz), Taryn Quattrocchi (Gr. 12 Warren Central HS)

Seven incorrect solutions were received.

