PROBLEM OF THE WEEK Solution of Problem No. 5 (Fall 2003 Series)

Problem: The triangle \triangle has angles α, β, γ opposite respectively to the sides a, b, c. Show that \triangle is equilateral if and only if $ab \cos \gamma = ac \cos \beta = bc \cos \alpha$.

Solution (by Chad Aeschliman, Soph. ECE)

By the law of cosines,

$$\cos \gamma = (a^2 + b^2 - c^2)/2ab,$$

$$\cos \beta = (a^2 - b^2 + c^2)/2ac,$$

$$\cos \alpha = (-a^2 + b^2 + c^2)/2bc.$$

Substituting these into the given equation yields $a^2 + b^2 - c^2 = a^2 - b^2 + c^2 = -a^2 + b^2 + c^2$. Looking at the first equality we get $b^2 = c^2$, and looking at the last equality we get $a^2 = b^2$. Thus $a^2 = b^2 = c^2$, or |a| = |b| = |c| which is the definition of an equilateral triangle. The

converse conclusion is trivial.

Another solution (by the Panel).

Let $\overline{a}, \overline{b}, \overline{c}$ denote the vectors from B to C, C to A, A to B, resp. Then (1) $\overline{a} + \overline{b} + \overline{c} = 0$. Given is $\overline{a} \cdot \overline{b} = \overline{b} \cdot \overline{c} = \overline{c} \cdot \overline{a}$ (inner products). Hence $\overline{b} \cdot (\overline{a} - \overline{c}) = 0$ and by (1) $(\overline{a} + \overline{c})(\overline{a} - \overline{c}) = \overline{a}^2 - \overline{c}^2 = 0$, hence a = c, likewise c = b. Hence a = b = c.

Also solved by:

<u>Undergraduates</u>: Michael Chun Chang (So. Chem), Trushal V. Chokshi (So. ECE), Jignesh V. Mehta (So. Phys), Neel Mehta (So. AAE), Alex Thaman (Sr. CS/MA), Justin Woo (So. CS)

<u>Graduates</u>: Ali R. Butt (ECE), Tom Engelsman (ECE), Xing Fang (ECE), Ankur Jain (ChE), Gaurav Sharma (ECE)

<u>Others</u>: Taryn Quattrocchi (Gr. 12 Warren Central HS), Christopher Smith (Faculty, St. Cloud St. U., St. Cloud, MN), Daniel Suárez & A. Plaza (U. Las Palmas GC (Spain)), Benjamin K. Tsai (NIST) Ram Venkatachalam (Murex)