PROBLEM OF THE WEEK

 Solution of Problem No. 5 (Fall 2003 Series)Problem: The triangle \triangle has angles α, β, γ opposite respectively to the sides a, b, c. Show that \triangle is equilateral if and only if $a b \cos \gamma=a c \cos \beta=b c \cos \alpha$.

Solution (by Chad Aeschliman, Soph. ECE)
By the law of cosines,

$$
\begin{aligned}
& \cos \gamma=\left(a^{2}+b^{2}-c^{2}\right) / 2 a b \\
& \cos \beta=\left(a^{2}-b^{2}+c^{2}\right) / 2 a c \\
& \cos \alpha=\left(-a^{2}+b^{2}+c^{2}\right) / 2 b c
\end{aligned}
$$

Substituting these into the given equation yields $a^{2}+b^{2}-c^{2}=a^{2}-b^{2}+c^{2}=-a^{2}+b^{2}+c^{2}$. Looking at the first equality we get $b^{2}=c^{2}$, and looking at the last equality we get $a^{2}=b^{2}$. Thus $a^{2}=b^{2}=c^{2}$, or $|a|=|b|=|c|$ which is the definition of an equilateral triangle. The converse conclusion is trivial.

Another solution (by the Panel).
Let $\bar{a}, \bar{b}, \bar{c}$ denote the vectors from B to C, C to A, A to B, resp. Then (1) $\bar{a}+\bar{b}+\bar{c}=0$. Given is $\bar{a} \cdot \bar{b}=\bar{b} \cdot \bar{c}=\bar{c} \cdot \bar{a}$ (inner products). Hence $\bar{b} \cdot(\bar{a}-\bar{c})=0$ and by $(1)(\bar{a}+\bar{c})(\bar{a}-\bar{c})=$ $\bar{a}^{2}-\bar{c}^{2}=0$, hence $a=c$, likewise $c=b$. Hence $a=b=c$.

Also solved by:
Undergraduates: Michael Chun Chang (So. Chem), Trushal V. Chokshi (So. ECE), Jignesh V. Mehta (So. Phys), Neel Mehta (So. AAE), Alex Thaman (Sr. CS/MA), Justin Woo (So. CS)
Graduates: Ali R. Butt (ECE), Tom Engelsman (ECE), Xing Fang (ECE), Ankur Jain (ChE), Gaurav Sharma (ECE)
Others: Taryn Quattrocchi (Gr. 12 Warren Central HS), Christopher Smith (Faculty, St. Cloud St. U., St. Cloud, MN), Daniel Suárez \& A. Plaza (U. Las Palmas GC (Spain)), Benjamin K. Tsai (NIST) Ram Venkatachalam (Murex)

