PROBLEM OF THE WEEK

Solution of Problem No. 7 (Fall 2003 Series)

Problem: Given a prime number p, prove that the polynomial congruence $(x+y)^{n} \equiv x^{n}+y^{n}(\bmod p)$ is true if and only if n is a power of p.

Solution (by the Panel)
Let $P(x, y)=(x+y)^{n}-x^{n}-y^{n}=\sum_{k=1}^{n-1}\binom{n}{k} x^{k} y^{n-k}$.
(a) If $n=p^{a}$, then all the coefficients of P are divisible by p.

Proof: For $1 \leq j \leq p^{a}-1,\binom{p^{a}}{j}=\frac{p^{a}}{j}\binom{p^{a}-1}{j-1}$. If $j=r p^{b}$ where $(r, p)=1$, then $\frac{p^{a}}{j}=\frac{p^{a-b}}{r}$ where $a-b \geq 1$ (since $j<p^{a}$). Thus r must divide $\binom{p^{a}-1}{j-1}$ (since $\binom{p^{a}}{j}$ is an integer), and $\binom{p^{a}}{j}$ is divisible by p^{a-b}.
(b) If n is not a power of p then not all $\binom{n}{j}$ are divisible by p.

Proof: For $p^{a}<n<p^{a+1}$, let $c=n-p^{a}$ so $0<c<p^{a}(p-1)$. Then $\binom{n}{c}=\binom{p^{a}+c}{c}=$ $\prod_{j=1}^{c} \frac{p^{a}+j}{j}$. If $j=r p^{b}$ where $(r, p)=1$ and $b<a$, then $\frac{p^{a}+j}{j}=\frac{p^{a-b}+r}{r}$. From this $\binom{n}{c}$ equals a product of fractions none of whose numerators is a multiple of p.

Remark. Prof. Landy thought to have given a counter example to part (a). However, the assertion $f(x, y)=(x+y)^{n}-x^{n}-y^{n} \equiv 0$ is not meant as $f(x, y) \equiv 0$ for all integers x, y, but that every coefficient of the polynomial $f(x, y)$ is congruent to zero $(\bmod p)$.

Also solved by:
Undergraduates: Michael Chun Chang (So. Bio/Chem), Jignesh V. Mehta (So. Phys)
Graduates: Jianguang Guo (Phys)
Faculty: Steven Landy (Physics at IUPUI)
Six incorrect solutions were received.

Jason Anema (Jr. MA) submitted a late correct solution of Problem 5.

