PROBLEM OF THE WEEK Solution of Problem No. 8 (Fall 2003 Series)

Problem: Suppose a point contains x(t) fish at time t and x(t) changes according to $\frac{dx}{dt} = x(1-\frac{x}{x_0}) - f$, where x_0 is the equilibrium amount with no fishing and f > 0 is the constant rate of removal due to fishing. Assume $x(0) = \frac{x_0}{2}$.

a) If $f < \frac{x_0}{4}$, solve for x(t) and show that it tends to an equilibrium amount between $\frac{x_0}{2}$ and x_0 .

b) What happens if $f \ge \frac{x_0}{4}$?

Solution (by the Panel)

$$\frac{dx}{dt} = x - \frac{x^2}{x_0} - f = -\frac{1}{x_0}(x - \frac{x_0}{2})^2 + (\frac{x_0}{4} - f).$$

Let $\frac{1}{\sqrt{x_0}}(x-\frac{x_0}{2})=y(t)$, so that $\sqrt{x_0} dy=dx$ and y(0)=0. Also let $a^2=|\frac{x_0}{4}-f|$. In these terms the D.E. is

$$-dt = \frac{\sqrt{x_0} \, dy}{y^2 \mp a^2}$$

where a = 0 if $f = \frac{x_0}{4}$, negative if $f < \frac{x_0}{4}$, and positive if $f > \frac{x_0}{4}$.

(a) When $f < \frac{x_0}{4}$, $-t = \frac{\sqrt{x_0}}{2a} \log \frac{a-y}{a+y} + c$. Since y(0) = 0, we have c = 0, and so $e^{\frac{-2at}{\sqrt{x_0}}} = \frac{a-y}{a+y} = \frac{2a}{a+y} - 1$, i.e. $y = \frac{2a}{1+e^{\frac{-2at}{\sqrt{x_0}}}} - a$.

As $t \to \infty$, clearly $y \to a$, i.e. $\frac{1}{\sqrt{x_0}}(x - \frac{x_0}{2}) \to \sqrt{\frac{x_0}{4} - f}$, and so $x \to \frac{x_0}{2} + \sqrt{\frac{x_0^2}{4} - fx_0}$. (b) When $f = \frac{x_0}{4}$, the original equation is $\frac{dx}{dt} = -(x - \frac{x_0}{2})^2/x_0$, which has the obvious constant solution $x(t) = \frac{x_0}{2} = x(0)$. When $f > \frac{x_0}{4}$, $-t = \frac{\sqrt{x_0}}{a} \arctan \frac{y}{a} + c$, where again c = 0. Now $-\tan \frac{at}{\sqrt{x_0}} = \frac{y}{a}$ or $-\sqrt{f - \frac{x_0}{4}} \tan \frac{\sqrt{f - \frac{x_0}{4}}}{\sqrt{x_0}} t = \frac{1}{\sqrt{x_0}}(x - \frac{x_0}{2})$, and so $x = \frac{x_0}{2} - \sqrt{fx_0 - \frac{x_0^2}{4}} \tan \sqrt{\frac{f}{x_0} - \frac{1}{4}}t$.

This is a decreasing function of t which becomes 0 when $\tan \sqrt{\frac{f}{x_0} - \frac{1}{4}} t = \frac{x_0}{2} \frac{1}{\sqrt{fx_0 - \frac{x_0^2}{4}}}$. So the fish population becomes 0 in a finite time.

Solved by:

<u>Undergraduates</u>: Kedar Hippalgaonkar (Fr. ME), Jignesh V. Mehta (So. Phys)

Graduates: Tom Engelsman (ECE), Brahma N.R. Vanga (Nucl.)

Others: Benjamin K. Tsai (NIST)

Two incorrect solutions were received.