PROBLEM OF THE WEEK

Solution of Problem No. 11 (Fall 2003 Series)

Problem: Given a circle K with center O and radius 1 , and two points A, B in the same plane, show that the locus of centroids of triangles $A B C$ with C on K is a circle. Determine its center and radius.

Solution (by Brahma N. R. Vanga, Gr. Nucl. Eng.))
Let the coordinates of A, B and C be $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ w.r.t. to an origin at the center of circle K. The centroid of the \triangle is given by

$$
\left(x_{c}, y_{c}\right)=\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right) .
$$

By virtue of C lying on the circle and satisfying $x_{3}^{2}+y_{3}^{2}=1$, we have

$$
\left[3\left(x_{c}-\frac{x_{1}+x_{2}}{3}\right)\right]^{2}+\left[3\left(y_{c}-\frac{y_{1}+y_{2}}{3}\right)\right]^{2}=1 .
$$

Therefore the locus of $\left(x_{c}, y_{c}\right)$ is a circle with center at

$$
\left(\frac{x_{1}+x_{2}}{3}, \frac{y_{1}+y_{2}}{3}\right),
$$

which is the centroid of $\triangle O A B$, and radius $\frac{1}{3}$.
Also solved by:
Undergraduates: Trushal V. Chokshi (So. ECE), Kedar Hippalgaonkar (Fr. ME), Jignesh V. Mehta (So. Phys)

Graduates: Jianguang Guo (Phys), K. H. Sarma (NucE), Amit Shirsat (CS), Kshitij Shrotri (AAE)

Others: Gagan Tara Nanda (Sr. UC Berkeley), Angel Plaza (ULPGC Spain), Christopher Smith (St. Cloud St., MN)

One incorrect solution was received.

